9. 1 Add and Subtract Polynomials
 A.1.C, A.4.A, A.4.B

Before	You added and subtracted integers.
Now	You will add and subtract polynomials.
Why?	So you can model trends in recreation, as in Ex. 37.

Key Vocabulary

- monomial
- degree
- polynomial
- leading coefficient
- binomial
-trinomial

A monomial is a number, a variable, or the product of a number and one or more variables with whole number exponents. The degree of a monomial is the sum of the exponents of the variables in the monomial. The degree of a nonzero constant term is 0 . The constant 0 does not have a degree.

Monomial	Degree
10	0
$3 x$	1
$\frac{1}{2} a b^{2}$	$1+2=3$
$-1.8 m^{5}$	5

Not a monomial	Reason
$5+x$	A sum is not a monomial.
$\frac{2}{n}$	A monomial cannot have a variable in the denominator.
4^{a}	A monomial cannot have a variable exponent.
x^{-1}	The variable must have a whole number exponent.

A polynomial is a monomial or a sum of monomials, each called a term of the polynomial. The degree of a polynomial is the greatest degree of its terms.
When a polynomial is written so that the exponents of a variable decrease from left to right, the coefficient of the first term is called the leading coefficient.

EXAMPLE 1 Rewrite a polynomial

Write $15 x-x^{3}+3$ so that the exponents decrease from left to right. Identify the degree and leading coefficient of the polynomial.

Solution

Consider the degree of each of the polynomial's terms.

The polynomial can be written as $-x^{3}+15 x+3$. The greatest degree is 3 , so the degree of the polynomial is 3 , and the leading coefficient is -1 .

