8 CHAPTER REVIEW

EXAMPLE 1

Tell whether the graph represents exponential growth or exponential decay. Then write a rule for the function.

The graph represents exponential decay ($y=a b^{x}$ where $0<b<1$). The y-intercept is 2 , so $a=2$. Find the value of b by using the point $(1,0.5)$ and $a=2$.

$$
\begin{aligned}
y & =a b^{x} & & \text { Write function. } \\
0.5 & =2 \cdot b^{1} & & \text { Substitute. } \\
0.25 & =b & & \text { Solve for } b .
\end{aligned}
$$

A function rule is $y=2(0.25)^{x}$.

EXAMPLE 2

CAR VALUE A family purchases a car for $\$ 11,000$. The car depreciates (loses value) at a rate of about 16% annually. Write a function that models the value of the car over time. Find the approximate value of the car in 4 years.

Let V represent the value (in dollars) of the car, and let t represent the time (in years since the car was purchased). The initial value is 11,000 , and the decay rate is 0.16 .

$$
\begin{aligned}
V & =\boldsymbol{a}(1-r)^{t} & & \text { Write exponential decay model. } \\
& =\mathbf{1 1 , 0 0 0}(1-0.16)^{t} & & \text { Substitute 11,000 for } \boldsymbol{a} \text { and } \mathbf{0 . 1 6} \text { for } \mathbf{r} . \\
& =11,000(0.84)^{t} & & \text { Simplify. }
\end{aligned}
$$

To find the approximate value of the car in 4 years, substitute 4 for t.

$$
V=11,000(0.84)^{t}=11,000(0.84)^{4} \approx \$ 5477
$$

The approximate value of the car in 4 years is $\$ 5477$.

EXERCISES

: EXAMPLES
4 and 5
on pp. 533-534
for Exs. 40-42

Tell whether the graph represents exponential growth or exponential decay. Then write a rule for the function.
40.

41.

42. CAR VALUE The value of a car is $\$ 13,000$. The car depreciates (loses value) at a rate of about 15% annually. Write an exponential decay model for the value of the car. Find the approximate value of the car in 4 years.

