

BIG IDEAS

For Your Notebook

Applying Properties of Exponents to Simplify Expressions

You can use the properties of exponents to simplify expressions. For the properties listed below, *a* and *b* are real numbers, and *m* and *n* are integers.

Expression	Prograntly
$a^m \cdot a^n = a^{m+n}$	Product of powers property
$(a^m)^n = a^{mn}$	Power of power property
$(ab)^m = a^m b^m$	Power of product property
$\frac{a^m}{a^n}=a^{m-n}, a\neq 0$	Quotient of powers property
$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$	Power of quotient property

Working with Numbers in Scientific Notation

You can write numbers in scientific notation.

Number	Standard form	Scientific notation
Four billion	4,000,000,000	$4 imes 10^9$
Thirty-two thousandths	0.032	$3.2 imes10^{-2}$

You can also compute with numbers in scientific notation. For example:

 $(4 \times 10^9) \times (3.2 \times 10^{-2}) = 12.8 \times 10^7 = 1.28 \times 10^8$, or 128,000,000

Big Idea (2)

текз а.1

Writing and Graphing Exponential Functions

You can write and graph exponential growth and decay functions. You can also model real-world situations involving exponential growth and exponential decay.

Exponential growth	Exponential decay	
Function: $y = ab^x$, $a > 0$ and $b > 1$	Function $y = ab^{x}$, $a > 0$ and $0 < b < 1$	
Graph:	Graph:	
Model: $y = a(1 + r)^{t}$	Model: $y = a(1 - r)^{t}$	