8

 CHAPIER SUWMARY
BIG IDEAS

Big Idea 1

 teks A.11.A
Applying Properties of Exponents to Simplify Expressions

You can use the properties of exponents to simplify expressions. For the properties listed below, a and b are real numbers, and m and n are integers.

Expression	flopprertyy
$a^{m} \cdot a^{n}=a^{m+n}$	Product of powers property
$\left(a^{m}\right)^{n}=a^{m n}$	Power of power property
$(a b)^{m}=a^{m} b^{m}$	Power of product property
$\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0$	Quotient of powers property
$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}, b \neq 0$	Power of quotient property

Working with Numbers in Scientific Notation

You can write numbers in scientific notation.

Number	Standard form	Scientific notation
Four billion	$4,000,000,000$	4×10^{9}
Thirty-two thousandths	0.032	3.2×10^{-2}

You can also compute with numbers in scientific notation. For example:

$$
\left(4 \times 10^{9}\right) \times\left(3.2 \times 10^{-2}\right)=12.8 \times 10^{7}=1.28 \times 10^{8}, \text { or } 128,000,000
$$

Big Idea 3

 teks A.11.C
Writing and Graphing Exponential Functions

You can write and graph exponential growth and decay functions. You can also model real-world situations involving exponential growth and exponential decay.

Exponential growth	Exponential decay
Function: $y=a b^{x}, a>0$ and $b>1$	Function $y=a b^{x}, a>0$ and $0<b<1$
Graph:	Graph:

