Lessons 8.4-8.6
 MULTIPLE CHOICE

1. EARTH The radius of Earth is about 6370 kilometers. The surface area S of a sphere with radius r is given by $S=4 \pi r^{2}$. If you assume that Earth is a perfect sphere, which of the following is the surface area of Earth? TEKS A.11.A
(A) $5.10 \times 10^{4} \mathrm{~km}^{2}$
(B) $5.10 \times 10^{5} \mathrm{~km}^{2}$
(C) $5.10 \times 10^{6} \mathrm{~km}^{2}$
(D) $5.10 \times 10^{8} \mathrm{~km}^{2}$
2. BUSINESS The graph of the exponential growth function shows the value of a business over time.

Which of the following equations models the value v (in dollars) of the business over time t (in years)? TEKS A.11.C
(F) $v=15,000(1.30)^{t}$
(G) $v=15,000(0.70)^{t}$
(H) $\nu=15,000(0.50)^{t}$
(J) $v=15,000(0.30)^{t}$
3. CHEMISTRY Avogadro's number is a number chemists use to describe quantities of atoms. Avogadro's number is defined as the number of atoms in exactly 12 grams of carbon, or 6.022×10^{23}. Divide 12 grams by Avogadro's number to find the mass (in grams) of a single carbon atom. TEKS A.11.A
(A) 1.993×10^{-24}
(B) 5.018×10^{-24}
(C) 1.993×10^{-23}
(D) 5.018×10^{-22}
4. TRUCK The exponential decay graph shows the value of a truck over time.

How is the value changing? TEKS A.11.C
(F) Decreasing by 5% each year
(G) Decreasing by $\$ 1250$ each year
(H) Decreasing by 95% each year
(J) Decreasing by $\$ 2250$ each year
5. SAVINGS An employee earns $\$ 35,000$ one year. She deposits 10% of the money into a savings account that earns 4% annual interest compounded yearly. After 2 years, how much more money does she have than if she had not put her money into the account? TEKS A.11.C
(A) $\$ 280$
(B) $\$ 285.60$
(C) $\$ 3780$
(D) $\$ 3785.60$
6. MEDICINE The half-life of a medication is the time it takes for the medication to reduce to half of its original amount in a patient's bloodstream. A certain antibiotic has a half-life of about 8 hours. A patient is administered 500 milligrams of the antibiotic. How much of the dose will be in the patient's bloodstream after 24 hours? TEKS A.11.A
(F) 0 mg
(G) 62.5 mg
(H) 75 mg
(J) 125 mg

GRIDDED ANSWER
7. LAPTOP A new laptop costs $\$ 2000$. The value of the laptop decreases over time. A model for the value v (in dollars) of the laptop after t years is given by $v=2000(0.90)^{t}$. What is the decay rate (as an annual percent in decimal form) of the value of the laptop? TEKS A.11.C

