FUNCTIONS The table shows that a rule for finding the nth term of a geometric sequence is $a_{n}=a_{1} r^{n-1}$. Notice that the rule is an exponential function.

KEY CONCEPT

General Rule for a Geometric Sequence

The nth term of a geometric sequence with first term a_{1} and common ratio r is given by: $a_{n}=a_{1} r^{n-1}$.

EXAMPLE 3 Write a rule for a geometric sequence

Write a rule for the \boldsymbol{n} th term of the geometric sequence in Example 1. Then find a_{10}.

Solution

To write a rule for the nth term of the sequence, substitute the values for a_{1} and r in the general rule $a_{n}=a_{1} r^{n-1}$. Because $a_{1}=128$ and $r=\frac{1}{2}$, $a_{n}=128 \cdot\left(\frac{1}{2}\right)^{n-1}$. The 10th term of the sequence is $a_{10}=128 \cdot\left(\frac{1}{2}\right)^{10-1}=\frac{1}{4}$.

PRACTICE

EXAMPLES

1,2 , and 3
on pp. 539-540
for Exs. 1-10

Tell whether the sequence is arithmetic or geometric. Then graph the sequence.

1. $3,12,48,192, \ldots$
2. $7,16,25,34, \ldots$
3. $34,28,22,16, \ldots$
4. $1024,128,16,2, \ldots$
5. $9,-18,36,-72, \ldots$
6. $29,43,57,71, \ldots$

Write a rule for the $\boldsymbol{n} \boldsymbol{t h}$ term of the geometric sequence. Then find $\boldsymbol{a}_{\mathbf{7}}$.
7. $1,-5,25,-125, \ldots$
8. $13,26,52,104, \ldots$
9. $432,72,12,2, \ldots$
10. E-MAIL A chain e-mail instructs the recipient to forward the e-mail to four more people. The table shows the number of rounds of sending the e-mail and the number of new e-mails generated. Write a rule for the nth term of the sequence. Then graph the first six terms of the sequence.

Number of rounds sending e-mail, \boldsymbol{n}	1	2	3	4
Number of new e-mails generated, $\boldsymbol{a}_{\boldsymbol{n}}$	1	4	16	64

