Extension

Use artiter Lesson 8.6

Key Vocabulary

- geometric sequence
- common ratio

REVIEW ARITHMETIC

 SEQUENCESFor help with identifying an arithmetic sequence and finding a common difference, see p. 309.

Relate Geometric Sequences to Exponential Functions
 A.1.B, A.1.D,
 A.3.B, A.11.C

Goal Identify, graph, and write geometric sequences.
In a geometric sequenc , the ratio of any term to the previous term is constant. This constant ratio is called the common ratio and is denoted by r.

A geometric sequence with first term a_{1} and common ratio r has the form a_{1}, $a_{1} r, a_{1} r^{2}, a_{1} r^{3}, \ldots$. For instance, if $a_{1}=5$ and $r=2$, the sequence $5,5 \cdot 2,5 \cdot 2^{2}$, $5 \cdot 2^{3}, \ldots$, or $5,10,20,40, \ldots$, is geometric.

EXAMPLE 1 Identify a geometric sequence

Tell whether the sequence is arithmetic or geometric. Then write the next term of the sequence.
a. $3,6,9,12,15, \ldots$
b. $128,64,32,16,8, \ldots$

Solution

a. The first term is $a_{1}=3$. Find the ratios of consecutive terms:
$\frac{a_{2}}{a_{1}}=\frac{6}{3}=2$
$\frac{a_{3}}{a_{2}}=\frac{9}{6}=1 \frac{1}{2}$
$\frac{a_{4}}{a_{3}}=\frac{12}{9}=1 \frac{1}{3}$
$\frac{a_{5}}{a_{4}}=\frac{15}{12}=1 \frac{1}{4}$

Because the ratios are not constant, the sequence is not geometric. To see if the sequence is arithmetic, find the differences of consecutive terms.

$$
\begin{array}{ll}
a_{2}-a_{1}=6-3=3 & a_{3}-a_{2}=9-6=3 \\
a_{4}-a_{3}=12-9=3 & a_{5}-a_{4}=15-12=3
\end{array}
$$

The common difference is 3 , so the sequence is arithmetic. The next term of the sequence is $a_{6}=a_{5}+3=18$.
b. The first term is $a_{1}=128$. Find the ratios of consecutive terms:

$$
\frac{a_{2}}{a_{1}}=\frac{64}{128}=\frac{1}{2} \quad \frac{a_{3}}{a_{2}}=\frac{32}{64}=\frac{1}{2} \quad \frac{a_{4}}{a_{3}}=\frac{16}{32}=\frac{1}{2} \quad \frac{a_{5}}{a_{4}}=\frac{8}{16}=\frac{1}{2}
$$

Because the ratios are constant, the sequence is geometric. The common ratio is $\frac{1}{2}$. The next term of the sequence is $a_{6}=a_{5} \cdot \frac{1}{2}=4$.

EXAMPLE 2 Graph a geometric sequence

To graph the sequence from part (b) of Example 1, let each term's position number in the sequence be the x-value. The term is the corresponding y-value. Then make and plot the points.

Position, x	1	2	3	4	5
Term, y	128	64	32	16	8

