EXAMPLE 4
on p. 533
for Exs. 38-40

MATCHING Match the function with its graph.
32. $y=(0.2)^{x}$
A.

33. $y=5(0.2)^{x}$
B.

34. $y=\frac{1}{2}(0.2)^{x}$
C.

35. POPULATION A population of 90,000 decreases by 2.5% per year. Identify the initial amount, the decay factor, and the decay rate. Then write a function that models the population over time.
36. TAKS REASONING What is the decay rate of the function $y=4(0.97)^{t}$?
(A) 4
(B) 0.97
(C) 0.3
(D) 0.03
37. ERROR ANALYSIS In 2004 a person purchased a car for $\$ 25,000$. The value of the car decreased by 14% annually. Describe and correct the error in writing a

$$
\begin{aligned}
y & =a(1-r)^{t} \\
& =25,000(0.14)^{t}
\end{aligned}
$$ function that models the value of the car since 2004.

RECOGNIZING EXPONENTIAL MODELS Tell whether the graph represents exponential growth or exponential decay. Then write a rule for the function.
38.

39.

40.

AnimatedAlgebra at classzone.com
41. REASONING Without graphing, explain how the graphs of the given functions are related to the graph of $f(x)=(0.5)^{x}$.
a. $m(x)=\frac{1}{3} \cdot(0.5)^{x}$
b. $n(x)=-4 \cdot(0.5)^{x}$
c. $p(x)=(0.5)^{x}+1$

CHALLENGE Write an exponential function of the form $y=a b^{x}$ whose graph

 passes through the given points.42. $(0,1),\left(2, \frac{1}{4}\right)$
43. $(1,20),(2,4)$
44. $\left(1, \frac{3}{2}\right),\left(2, \frac{3}{4}\right)$
45. WRITING The initial amount of a quantity is a units and the quantity is decaying at a rate of r (a percent per time period). Show that the amount of the quantity after one time period is $a(1-r)$. Explain how you found your answer.
46. Challenge Compare the graph of the function $f(x)=4^{x-2}$ with the graph of the function $g(x)=\frac{1}{16} \cdot 4^{x}$. Use properties of exponents to explain your observation.
