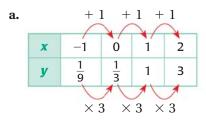
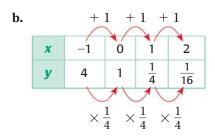
8.6 Write and Graph Exponential Decay Functions


(Before	You wrote and graphed exponential growth functions.	
(Now	You will write and graph exponential decay functions.	
	Why?	So you can use a graph to solve a sports problem, as in Ex. 50.	1

Key Vocabulary • exponential decay

A table of values represents an exponential function $y = ab^x$ provided successive *y*-values are multiplied by *b* each time the *x*-values increase by 1.

EXAMPLE 1 Write a function rule


Tell whether the table represents an exponential function. If so, write a rule for the function.

The *y*-values are multiplied by 3 for each increase of 1 in *x*, so the table represents an exponential function of the form $y = ab^x$ with b = 3.

The value of *y* when
$$x = 0$$
 is $\frac{1}{3}$, so $a = \frac{1}{3}$

The table represents the exponential function $y = \frac{1}{3} \cdot 3^{x}$.

The *y*-values are multiplied by $\frac{1}{4}$ for each increase of 1 in *x*, so the table represents an exponential function of the form $y = ab^x$ with $b = \frac{1}{4}$.

The value of *y* when x = 0 is 1, so a = 1.

The table represents the exponential function $y = \left(\frac{1}{A}\right)^x$.

GUIDED PRACTICE for Example 1

1. Tell whether the table represents an exponential function. If so, write a rule for the function.

x	-1	0	1	2
у	5	1	$\frac{1}{5}$	$\frac{1}{25}$