COMPOUND INTEREST Compound interest is interest earned on both an initial investment and on previously earned interest. Compounding of interest can be modeled by exponential growth where a is the initial investment, r is the annual interest rate, and t is the number of years the money is invested.

EXAMPLE 5 TAKS PRACTICE: Multiple Choice

You put $\$ 350$ in a savings account that earns $\mathbf{3 \%}$ annual interest compounded yearly. You do not make any deposits or withdrawals. How much will your investment be worth in 5 years?
(A) $\$ 392$
(B) $\$ 393.93$
(C) $\$ 770$
(D) $\$ 999.64$

ESTIMATE

You can use the simple interest formula, $I=p r t$, to estimate the amount of interest the account earns:
$(350)(0.03)(4)=42$.
Compounding interest will result in slightly more than \$42.

Solution

$$
\begin{aligned}
y & =a(1+r)^{t} & & \text { Write exponential growth model. } \\
& =350(1+0.03)^{4} & & \text { Substitute } 350 \text { for } \boldsymbol{a}, \mathbf{0 . 0 3} \text { for } \boldsymbol{r} \text {, and } 4 \text { for } \boldsymbol{t} . \\
& =350(1.03)^{4} & & \text { Simplify. } \\
& \approx 393.93 & & \text { Use a calculator. }
\end{aligned}
$$

You will have $\$ 393.93$ in 4 years.
\rightarrow The correct answer is B. (A) (B) (D)

Guided Practice for Examples 4 and 5

5. WHAT IF? In Example 4, suppose the owner of the car sold it in 1994. Find the value of the car to the nearest dollar.
6. WHAT IF? In Example 5, suppose the annual interest rate is 3.5%. How much will your investment be worth in 5 years?

8.5 EXERCISES

HOMEWORK KEY	= WORKED-OUT SOLUTIONS on p. WS1 for Exs. 13 and 41 = TAKS PRACTICE AND REASONING Exs. 34, 42, 43, 46, and 52 = MULTIPLE REPRESENTATIONS Ex. 41

SKILL Practice

1. VOCABULARY In the exponential growth model $y=a(1+r)^{t}$, the quantity $1+r$ is called the ?.
2. VOCABULARY For what values of b does the exponential function $y=a b^{x}$ (where $a>0$) represent exponential growth?
3. WRITING How does the graph of $y=2 \cdot 5^{x}$ compare with the graph of $y=5^{x}$? Explain.
