REWRITE EQUATIONS

Notice that you can rewrite $y=a b^{x}$ as $y=a(1+r)^{t}$ by replacing b with $1+r$ and x with t (for time).

EXPONENTIAL GROWTH When $a>0$ and $b>1$, the function $y=a b^{x}$ represents exponential growth. When a quantity grows exponentially, it increases by the same percent over equal time periods. To find the amount to which the quantity grows after t time periods, use the following model.

KEY CONCEPT

 For Your Notebook
Exponential Growth Model

a is the initial amount.

Notice the relationship between the growth rate r and the growth factor $1+r$. If the initial amount of a quantity is a units and the quantity is growing at a rate of r, then after one time period the new amount is:

$$
\text { Initial amount + amount of increase }=a+r \cdot a=a(1+r)
$$

EXAMPLE 4 TAKS REASONING: Multi-Step Problem

ANOTHER WAY

For alternative methods for solving Example 4, turn to page 528 for the Problem Solving Workshop.

COLLECTOR CAR The owner of a 1953 Hudson Hornet convertible sold the car at an auction. The owner bought it in 1984 when its value was $\$ 11,000$. The value of the car increased at a rate of 6.9% per year.
a. Write a function that models the value of the car over time.
b. The auction took place in 2004 . What was the approximate value of the car at the time of the auction? Round your answer to the nearest dollar.

Solution

a. Let C be the value of the car (in dollars), and let t be the time (in years) since 1984. The initial value a is $\$ 11,000$, and the growth rate r is 0.069 .

$$
\begin{aligned}
C & =a(1+r)^{t} & & \text { Write exponential growth model. } \\
& =11,000(1+0.069)^{t} & & \text { Substitute 11,000 for } \boldsymbol{a} \text { and } 0.069 \text { for } r . \\
& =11,000(1.069)^{t} & & \text { Simplify. }
\end{aligned}
$$

b. To find the value of the car in 2004, 20 years after 1984, substitute 20 for t.

$$
\begin{aligned}
C & =11,000(1.069)^{20} & & \text { Substitute } 20 \text { for } \\
& \approx 41,778 & & \text { Use a calculator. }
\end{aligned}
$$

- In 2004 the value of the car was about \$41,778.

[^0]
[^0]: AnimatedAlgebra at classzone.com

