EXAMPLE 2 Graph an exponential function

Graph the function $y=2^{x}$. Identify its domain and range.

Solution

STEP 1 Make a table by choosing a few values for x and finding the values of y. The domain is all real numbers.

x	-2	-1	0	1	2
y	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4

STEP 2 Plot the points.
STEP 3 Draw a smooth curve through the points. From either the table or the graph, you can see that the range is all positive real numbers.

EXAMPLE 3 Compare graphs of exponential functions

Graph the functions $y=3 \cdot 2^{x}$ and $y=-3 \cdot 2^{x}$. Compare each graph with the graph of $y=2^{x}$.

Solution

To graph each function, make a table of values, plot the points, and draw a smooth curve through the points.

x	$y=2^{x}$	$y=3 \cdot 2^{x}$	$y=-3 \cdot 2^{x}$
-2	$\frac{1}{4}$	$\frac{3}{4}$	$-\frac{3}{4}$
-1	$\frac{1}{2}$	$\frac{3}{2}$	$-\frac{3}{2}$
0	$\mathbf{1}$	$\mathbf{3}$	-3
1	$\mathbf{2}$	$\mathbf{6}$	-6
2	$\mathbf{4}$	$\mathbf{1 2}$	-12

Because the y-values for $y=3 \cdot 2^{x}$ are 3 times the corresponding y-values for $y=2^{x}$, the graph of $y=3 \cdot 2^{x}$ is a vertical stretch of the graph of $y=2^{x}$.

Because the y-values for $y=-3 \cdot 2^{x}$ are -3 times the corresponding y-values for $y=2^{x}$, the graph of $y=-3 \cdot 2^{x}$ is a vertical stretch with a reflection in the x-axis of the graph of $y=2^{x}$.

Guided Practice for Examples 2 and 3

2. Graph $y=5^{x}$ and identify its domain and range.
3. Graph $y=\frac{1}{3} \cdot 2^{x}$. Compare the graph with the graph of $y=2^{x}$.
4. Graph $y=-\frac{1}{3} \cdot 2^{x}$. Compare the graph with the graph of $y=2^{x}$.
