

Define and Use Fractional Exponents 4.11.4

GOAL Use fractional exponents.

Key Vocabulary

• cube root

In Lesson 2.7, you learned to write the square root of a number using a radical sign. You can also write a square root of a number using exponents.

For any $a \ge 0$, suppose you want to write \sqrt{a} as a^k . Recall that a number b (in this case, a^k) is a square root of a number a provided $b^2 = a$. Use this definition to find a value for k as follows.

$$b^2 = a$$
 Definition of square root

$$(a^k)^2 = a$$
 Substitute a^k for b .

$$a^{2k} = a^1$$
 Product of powers property

Because the bases are the same in the equation $a^{2k} = a^1$, the exponents must be equal:

$$2k = 1$$
 Set exponents equal.

$$k = \frac{1}{2}$$
 Solve for k .

So, for a nonnegative number a, $\sqrt{a} = a^{1/2}$.

You can work with exponents of $\frac{1}{2}$ and multiples of $\frac{1}{2}$ just as you work with integer exponents.

EXAMPLE 1 Evaluate expressions involving square roots

a.
$$16^{1/2} = \sqrt{16}$$

b.
$$25^{-1/2} = \frac{1}{25^{1/2}}$$
$$= \frac{1}{\sqrt{25}}$$
$$= \frac{1}{\sqrt{25}}$$

c.
$$9^{5/2} = 9^{(1/2) \cdot 5}$$

$$= (9^{1/2})^5$$
$$= (\sqrt{9})^5$$

$$=3^{5}$$

$$= 243$$

$$= \frac{1}{\sqrt{25}}$$

$$= \frac{1}{5}$$
d. $4^{-3/2} = 4^{(1/2) \cdot (-3)}$

$$= (4^{1/2})^{-3}$$

$$=2^{-3}$$

 $=(\sqrt{4})^{-3}$

$$=\frac{1}{2^3}$$

$$=\frac{1}{8}$$

FRACTIONAL EXPONENTS You can work with other fractional exponents just as you did with $\frac{1}{2}$.