Extension

Use after Lesson 8.3

Define and Use Fractional Exponents

GoAL Use fractional exponents.

Key Vocabulary - cube root

In Lesson 2.7, you learned to write the square root of a number using a radical sign. You can also write a square root of a number using exponents.
For any $a \geq 0$, suppose you want to write \sqrt{a} as a^{k}. Recall that a number b (in this case, a^{k}) is a square root of a number a provided $b^{2}=a$. Use this definition to find a value for k as follows.

$$
\begin{aligned}
b^{2} & =a & & \text { Definition of square root } \\
\left(a^{k}\right)^{2} & =a & & \text { Substitute } a^{k} \text { for } b . \\
a^{2 k} & =a^{1} & & \text { Product of powers property }
\end{aligned}
$$

Because the bases are the same in the equation $a^{2 k}=a^{1}$, the exponents must be equal:

$$
\begin{aligned}
2 k & =1 & & \text { Set exponents equal. } \\
k & =\frac{1}{2} & & \text { Solve for } k .
\end{aligned}
$$

So, for a nonnegative number $a, \sqrt{a}=a^{1 / 2}$.
You can work with exponents of $\frac{1}{2}$ and multiples of $\frac{1}{2}$ just as you work with integer exponents.

EXAMPLE 1 Evaluate expressions involving square roots

a. $16^{1 / 2}=\sqrt{16}$
b. $25^{-1 / 2}=\frac{1}{25^{1 / 2}}$
$=4$

$$
\begin{aligned}
& =\frac{1}{\sqrt{25}} \\
& =\frac{1}{5}
\end{aligned}
$$

c. $9^{5 / 2}=9^{(1 / 2) \cdot 5}$
$=\left(9^{1 / 2}\right)^{5}$
d. $4^{-3 / 2}=4^{(1 / 2) \cdot(-3)}$
$=\left(4^{1 / 2}\right)^{-3}$
$=(\sqrt{9})^{5}$
$=(\sqrt{4})^{-3}$
$=3^{5}$
$=2^{-3}$
$=243$

$$
=\frac{1}{2^{3}}
$$

$$
=\frac{1}{8}
$$

FRACTIONAL EXPONENTS You can work with other fractional exponents just as you did with $\frac{1}{2}$.

