### 8.2 Apply Exponent Properties Involving Quotients <br> TEKS A.11.A

| Before | You used properties of exponents involving products. |
| :---: | :---: |
| Now | You will use properties of exponents involving quotients. |
| Why? | So you can compare magnitudes of earthquakes, as in Ex. 53. |

Key Vocabulary

- power, p. 3
- exponent, $p .3$
-base, $p .3$

Notice what happens when you divide powers with the same base.

$$
\frac{a^{5}}{a^{3}}=\frac{a \cdot a \cdot a \cdot a \cdot a}{a \cdot a \cdot a}=a \cdot a=a^{2}=a^{5-3}
$$

The example above suggests the following property of exponents, known as the quotient of powers property.

## KEY CONCEPT

## For Your Notebook

## Quotient of Powers Property

Let $a$ be a nonzero real number, and let $m$ and $n$ be positive integers such that $m>n$.

Words To divide powers having the same base, subtract exponents.
Algebra $\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0 \quad$ Example $\frac{4^{7}}{4^{2}}=4^{7-2}=4^{5}$

## EXAMPLE 1 Use the quotient of powers property

## SIMPLIFY

EXPRESSIONS
when simplifying powers with numerical bases only, write your answers using exponents, as in parts (a), (b), and (c).
a. $\frac{8^{10}}{8^{4}}=8^{10-4}$
b. $\frac{(-3)^{9}}{(-3)^{3}}=(-3)^{9-3}$
$=8^{6}$
$=(-3)^{6}$
c. $\frac{5^{4} \cdot 5^{8}}{5^{7}}=\frac{5^{12}}{5^{7}}$
d. $\frac{1}{x^{4}} \cdot x^{6}=\frac{x^{6}}{x^{4}}$
$=5^{12-7}$
$=x^{6-4}$
$=5^{5}$

$$
=x^{2}
$$

## GUIDED PRACTICE for Example 1

## Simplify the expression.

1. $\frac{6^{11}}{6^{5}}$
2. $\frac{(-4)^{9}}{(-4)^{2}}$
3. $\frac{9^{4} \cdot 9^{3}}{9^{2}}$
4. $\frac{1}{y^{5}} \cdot y^{8}$
