POWER OF A POWER Notice what happens when you raise a power to a power.

$$
\left(a^{2}\right)^{3}=a^{2} \cdot a^{2} \cdot a^{2}=(a \cdot a) \cdot(a \cdot a) \cdot(a \cdot a)=a^{6}=a^{2 \cdot 3}
$$

The example above suggests the following property of exponents, known as the power of a power property.

KEY CONCEPT

For Your Notebook

Power of a Power Property

Let a be a real number, and let m and n be positive integers.
Words To find a power of a power, multiply exponents.
Algebra $\left(a^{m}\right)^{n}=a^{m n}$
Example $\left(3^{4}\right)^{2}=3^{4 \cdot 2}=3^{8}$

EXAMPLE 2 Use the power of a power property

AVOID ERRORS

In part (d), notice that you can write $\left[(y+2)^{6}\right]^{2}$ as $(y+2)^{12}$, but you cannot write $(y+2)^{12}$ as $y^{12}+2^{12}$.
c. $\begin{aligned}\left(x^{2}\right)^{4} & =x^{2 \cdot 4} \\ & =x^{8}\end{aligned}$
c. $\begin{aligned}\left(x^{2}\right)^{4} & =x^{2 \cdot 4} \\ & =x^{8}\end{aligned}$
a. $\left(2^{5}\right)^{3}=2^{5 \cdot 3}$
$=2^{15}$
b. $\left[(-6)^{2}\right]^{5}=(-6)^{2 \cdot 5}$

$$
=(-6)^{10}
$$

d. $\left[(y+2)^{6}\right]^{2}=(y+2)^{6 \cdot 2}$
$=(y+2)^{12}$

GUided Practice for Example 2

Simplify the expression.

5. $\left(4^{2}\right)^{7}$
6. $\left[(-2)^{4}\right]^{5}$
7. $\left(n^{3}\right)^{6}$
8. $\left[(m+1)^{5}\right]^{4}$

POWER OF A PRODUCT Notice what happens when you raise a product to a power.

$$
(a b)^{3}=(a b) \cdot(a b) \cdot(a b)=(a \cdot a \cdot a) \cdot(b \cdot b \cdot b)=a^{3} b^{3}
$$

The example above suggests the following property of exponents, known as the power of a product property.

KEY CONCEPT

For Your Notebook

Power of a Product Property

Let a and b be real numbers, and let m be a positive integer.
Words To find a power of a product, find the power of each factor and multiply.
Algebra $(a b)^{m}=a^{m} b^{m}$
Example $(23 \cdot 17)^{5}=23^{5} \cdot 17^{5}$

