8. Apply Exponent Properties Involving Products
 TEKS A.11.A

Before
You evaluated exponential expressions.
Now
You will use properties of exponents involving products.
Why? So you can evaluate agricultural data, as in Example 5.

Key Vocabulary - order of magnitude

- power, p. 3
- exponent, $p .3$
- base, $p .3$

Notice what happens when you multiply two powers that have the same base.

$$
a^{2} \cdot a^{3}=\overbrace{\underbrace{a \cdot a}_{2 \text { factors }}) \cdot(\underbrace{a \cdot a \cdot a}_{3 \text { factors }})}^{5 \text { factors }}=a^{5}=a^{2+3}
$$

The example above suggests the following property of exponents, known as the product of powers property.

KEY CONCEPT

For Your Notebook

Product of Powers Property

Let a be a real number, and let m and n be positive integers.
Words To multiply powers having the same base, add the exponents.
Algebra $a^{m} \cdot a^{n}=a^{m+n} \quad$ Example $5^{6} \cdot 5^{3}=5^{6+3}=5^{9}$

SIMPLIFY
EXPRESSIONS
When simplifying powers with numerical bases only, write your answers using exponents, as in parts (a), (b), and (c).

EXAMPLE 1 Use the product of powers property

a. $7^{3} \cdot 7^{5}=7^{3+5}=7^{8}$
b. $9 \cdot 9^{8} \cdot 9^{2}=9^{1} \cdot 9^{8} \cdot 9^{2}$

$$
\begin{aligned}
& =9^{1+8+2} \\
& =9^{11}
\end{aligned}
$$

c. $(-5)(-5)^{6}=(-5)^{1} \cdot(-5)^{6}$

$$
\begin{aligned}
& =(-5)^{1+6} \\
& =(-5)^{7}
\end{aligned}
$$

d. $x^{4} \cdot x^{3}=x^{4+3}=x^{7}$

Guided Practice for Example 1

Simplify the expression.

1. $3^{2} \cdot 3^{7}$
2. $5 \cdot 5^{9}$
3. $(-7)^{2}(-7)$
4. $x^{2} \cdot x^{6} \cdot x$
