7 TAKS PRACTICE

PRACTICE FOR TAKS OBJECTIVE 8

1. Describe the effect on the area of a triangle when each of its side lengths is tripled.

A The area stays the same.
B The area triples.
C The area is reduced by $\frac{1}{3}$.
D The area increases nine times.
2. The scale factor of two similar polygons is $2: 5$. The area of the smaller polygon is 20 square meters. What is the area of the larger polygon?

F $\frac{16}{5} \mathrm{~m}^{2}$
G $50 \mathrm{~m}^{2}$
H $100 \mathrm{~m}^{2}$
J $125 \mathrm{~m}^{2}$
3. A scale drawing of a room has $\frac{1}{36}$ the dimensions of the actual room. The drawing has a perimeter of 1.5 feet. What is the perimeter of the room?
A 24 ft
B 36 ft
C 42 ft
D 54 ft
4. The scale factor of similar triangles $A B C$ and $D E F$ is $1: 9$. How many times greater is the area of $D E F$ than the area of $A B C$?

F 3
G 9
H 27
J 81
5. A polygon has a perimeter of 4 inches. How many times must the polygon be enlarged in order to have a perimeter of 400 inches?
A 10
B 16
C 100
D 396
6. A rectangular drawing has an area of 60 square inches. The dimensions of the drawing are enlarged by a factor of 150% using a photocopier. What is the area of the enlarged drawing?
F 90 in. 2
G $135 \mathrm{in}^{2}{ }^{2}$
H 180 in. 2
J $360 \mathrm{in}^{2}{ }^{2}$

MIXED TAKS PRACTICE

7. A hiker begins hiking a mountain at a height of 3075 feet above sea level. If the hiker's altitude increases at a constant rate of 3 feet per minute, which equation could be used to determine h, the hiker's height in feet above sea level after t minutes? TAKS Obj. 4
A $h=3+3075 t$
B $h=3075+3 t$
C $h=3(t+3075)$
D $h=(3075+3) t$
8. What are the slopes of the lines shown? TAKS Obj. 3

F $j:-\frac{3}{2}, k: \frac{3}{2}$
G $j: \frac{2}{3}, k:-\frac{3}{2}$
H $j: \frac{3}{2}, k: \frac{2}{3}$
J $j:-\frac{3}{2}, k: \frac{2}{3}$

