7 TAKS PRACTICE

PRACTICE FOR TAKS OBJECTIVE 8

- 1. Describe the effect on the area of a triangle when each of its side lengths is tripled.
 - **A** The area stays the same.
 - **B** The area triples.
 - **C** The area is reduced by $\frac{1}{3}$.
 - **D** The area increases nine times.
- 2. The scale factor of two similar polygons is 2:5. The area of the smaller polygon is 20 square meters. What is the area of the larger polygon?
 - **F** $\frac{16}{5}$ m²
 - **G** $50 \, \text{m}^2$
 - **H** 100 m^2
 - **J** 125 m^2
- 3. A scale drawing of a room has $\frac{1}{36}$ the dimensions of the actual room. The drawing has a perimeter of 1.5 feet. What is the perimeter of the room?
 - **A** 24 ft
 - **B** 36 ft
 - **C** 42 ft
 - **D** 54 ft
- **4.** The scale factor of similar triangles *ABC* and *DEF* is 1 : 9. How many times greater is the area of *DEF* than the area of *ABC*?
 - **F** 3
 - **G** 9
 - **H** 27
 - **J** 81
- **5.** A polygon has a perimeter of 4 inches. How many times must the polygon be enlarged in order to have a perimeter of 400 inches?
 - **A** 10
 - **B** 16
 - **C** 100
 - **D** 396

- 6. A rectangular drawing has an area of 60 square inches. The dimensions of the drawing are enlarged by a factor of 150% using a photocopier. What is the area of the enlarged drawing?
 - **F** 90 in.²
 - **G** 135 in.^2
 - **H** 180 in.²
 - **J** 360 in.²

MIXED TAKS PRACTICE

- **7.** A hiker begins hiking a mountain at a height of 3075 feet above sea level. If the hiker's altitude increases at a constant rate of 3 feet per minute, which equation could be used to determine *h*, the hiker's height in feet above sea level after *t* minutes? **TAKS Obj. 4**
 - **A** h = 3 + 3075t
 - **B** h = 3075 + 3t
 - **C** h = 3(t + 3075)
 - **D** h = (3075 + 3)t
- 8. What are the slopes of the lines shown? TAKS Obj. 3

- **F** $j: -\frac{3}{2}, k: \frac{3}{2}$
- **G** $j: \frac{2}{3}, k: -\frac{3}{2}$
- **H** $j: \frac{3}{2}, k: \frac{2}{3}$
- **J** $j: -\frac{3}{2}, k: \frac{2}{3}$