CHAPTER REVIEW

7.5

Solve Special Types of Linear Systems

рр. 459–465

EXAMPLE

Show that the linear system has no solution.

Graph the linear system.

The lines are parallel because they have the same slope but different *y*-intercepts. Parallel lines do not intersect, so the system has no solution.

EXAMPLES

1, 2, and 3 on pp. 459–461 for Exs. 25–27

EXERCISES

Tell whether the linear system has one solution, no solution, or infinitely many solutions. Explain.

25.
$$x = 2y - 3$$

 $1.5x - 3y = 0$

26.
$$-x + y = 8$$
 $x + 8 = y$

27.
$$4x = 2y + 6$$
 $4x + 2y = 10$

7.6

Solve Systems of Linear Inequalities

pp. 466-472

EXAMPLE

Graph the system of linear inequalities.

$$y < -2x + 3$$
 Inequality 1
 $y \ge x - 3$ Inequality 2

The graph of y < -2x + 3 is the half-plane *below* the *dashed* line y = -2x + 3.

The graph of $y \ge x - 3$ is the half-plane *on and above* the *solid* line y = x - 3.

The graph of the system is the intersection of the two half-planes shown as the darker shade of blue.

EXAMPLES

1, 2, 3, and 4 on pp. 466–468 for Exs. 28–31

Graph the system of linear inequalities.

28.
$$y < x + 3$$
 $y > -3x - 2$

29.
$$y \le -x - 2$$
 $y > 4x + 1$

30.
$$y \ge 0$$
 $x \le 2$ $y < x + 4$

31. MOVIE COSTS You receive a \$40 gift card to a movie theater. A ticket to a matinee movie costs \$5, and a ticket to an evening movie costs \$8. Write and graph a system of inequalities for the number of tickets you can purchase using the gift card.