
THE SOLUTION REGION In Example 1, the half-plane for each inequality is shaded, and the solution region is the intersection of the half-planes. From this point on, only the solution region will be shaded.

EXAMPLE 2 Graph a system of three linear inequalities

Graph the system of inequalities.	$y \ge -1$	Inequality 1
	x > -2	Inequality 2
	$x + 2y \le 4$	Inequality 3

Solution

Graph all three inequalities in the same coordinate plane. The graph of the system is the triangular region shown.

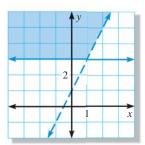
GUIDED PRACTICE for Examples 1 and 2

Graph the system of linear inequalities.

1. $y < x - 4$	2. $y \ge -x + 2$	3. $y > -x$
$y \ge -x + 3$	y < 4	$y \ge x - 4$
	<i>x</i> < 3	<i>y</i> < 5

EXAMPLE 3 Write a system of linear inequalities

Write a system of inequalities for the shaded region.


Solution

INEQUALITY 1: One boundary line for the shaded region is y = 3. Because the shaded region is *above* the *solid* line, the inequality is $y \ge 3$.

INEQUALITY 2: Another boundary line for the shaded region has a slope of 2 and a *y*-intercept of 1. So, its equation is y = 2x + 1. Because the shaded region is *above* the *dashed* line, the inequality is y > 2x + 1.

The system of inequalities for the shaded region is:

 $y \ge 3$ Inequality 1 y > 2x + 1 Inequality 2

REVIEW EQUATIONS OF LINES For help with writing an

equation of a line, see pp. 283, 302, and 311.