Show that the linear system has infinitely many solutions.

$$
\begin{array}{ll}
x-2 y=-4 & \text { Equation } 1 \\
y=\frac{1}{2} x+2 & \text { Equation } 2
\end{array}
$$

Solution

METHOD 1 Graphing

Graph the linear system.

- The equations represent the same line, so any point on the line is a solution. So, the linear system has infinitely many solutions.

METHOD 2 Substitution

Substitute $\frac{1}{2} x+2$ for y in Equation 1 and solve for x.

$$
\begin{aligned}
x-2 y & =-4 & & \text { Write Equation } 1 . \\
x-2\left(\frac{1}{2} x+2\right) & =-4 & & \text { Substitute } \frac{1}{2} x+2 \text { for } y . \\
-4 & =-4 & & \text { Simplify. }
\end{aligned}
$$

- The variables are eliminated and you are left with a statement that is true regardless of the values of x and y. This tells you that the system has infinitely many solutions.

- Guided Practice for Examples 1 and 2

Tell whether the linear system has no solution or infinitely many solutions. Explain.

1. $5 x+3 y=6$
$-5 x-3 y=3$
2. $y=2 x-4$
$-6 x+3 y=-12$

IDENTIFYING THE NUMBER OF SOLUTIONS When the equations of a linear system are written in slope-intercept form, you can identify the number of solutions of the system by looking at the slopes and y-intercepts of the lines.

Number of solutions	Slopes and \boldsymbol{y}-intercepts
One solution	Different slopes
No solution	Same slope Different y-intercepts
Infinitely many solutions	Same slope Same y-intercept

