EXAMPLE 2 A linear system with infinitely many solutions

Show that the linear system has infinitely many solutions.

$$x - 2y = -4$$
 Equation 1
 $y = \frac{1}{2}x + 2$ Equation 2

Solution

METHOD 1 Graphing

Graph the linear system.

• The equations represent the same line, so any point on the line is a solution. So, the linear system has infinitely many solutions.

METHOD 2 Substitution

Substitute $\frac{1}{2}x + 2$ for *y* in Equation 1 and solve for *x*.

x - 2y = -4 Write Equation 1. $x - 2\left(\frac{1}{2}x + 2\right) = -4$ Substitute $\frac{1}{2}x + 2$ for y. -4 = -4 Simplify.

▶ The variables are eliminated and you are left with a statement that is true regardless of the values of *x* and *y*. This tells you that the system has infinitely many solutions.

GUIDED PRACTICE for Examples 1 and 2

Tell whether the linear system has *no solution* or *infinitely many solutions*. *Explain*.

```
1. 5x + 3y = 6
-5x - 3y = 3
2. y = 2x - 4
-6x + 3y = -12
```

IDENTIFYING THE NUMBER OF SOLUTIONS When the equations of a linear system are written in slope-intercept form, you can identify the number of solutions of the system by looking at the slopes and *y*-intercepts of the lines.

Number of solutions	Slopes and y-intercepts
One solution	Different slopes
No solution	Same slope Different <i>y</i> -intercepts
Infinitely many solutions	Same slope Same <i>y</i> -intercept

IDENTIFY TYPES OF SYSTEMS

The linear system in Example 2 is called a consistent dependent system because the lines intersect (are consistent) and the equations are equivalent (are dependent).