7.5 Solve Special Types of Linear Systems

You found the solution of a linear system. You will identify the number of solutions of a linear system. So you can compare distances traveled, as in Ex. 39.

Key Vocabulary

• inconsistent system

- consistent dependent system
- system of linear equations, p. 427
- parallel, *p. 244*

A linear system can have no solution or infinitely many solutions. A linear

system has no solution when the graphs of the equations are parallel. A linear system with no solution is called an **inconsistent system**.

EXAMPLE 1 A linear system with no solution

Show that the linear system has no solution.

3x + 2y = 10 Equation 1 3x + 2y = 2 Equation 2

Solution

METHOD 1 Graphing

REVIEW GRAPHING

For help with graphing linear equations, see pp. 215, 225, and 244.

IDENTIFY TYPES OF

The linear system in

inconsistent system

because the lines do not intersect (are not

Example 1 is called an

SYSTEMS

consistent).

Graph the linear system. 3x + 2y = 2

The lines are parallel because they have the same slope but different *y*-intercepts. Parallel lines do not intersect, so the system has no solution.

METHOD 2 Elimination

Subtract the equations.

$$3x + 2y = 10$$

$$3x + 2y = 2$$

$$0 = 8$$
This is a false statement.

▶ The variables are eliminated and you are left with a false statement regardless of the values of *x* and *y*. This tells you that the system has no solution.

Animated Algebra at classzone.com