7.5
 7.5 A.8.C
 Solve Special Types of Linear Systems

Before
Now
Why?

Key Vocabulary

- inconsistent system
- consistent dependent system
- system of linear equations, $p .427$
- parallel, p. 244

You found the solution of a linear system.
You will identify the number of solutions of a linear system.
So you can compare distances traveled, as in Ex. 39.

A linear system can have no solution or infinitely many solutions. A linear system has no solution when the graphs of the equations are parallel. A linear system with no solution is called an inconsistent system.

A linear system has infinitely many solutions when the graphs of the equations are the same line. A linear system with infinitely many solutions is called a consistent dependent system.

EXAMPLE 1 A linear system with no solution

Show that the linear system has no solution.

$$
\begin{array}{ll}
3 x+2 y=10 & \text { Equation } 1 \\
3 x+2 y=2 & \text { Equation } 2
\end{array}
$$

Solution

METHOD 1 Graphing

Graph the linear system.

- The lines are parallel because they have the same slope but different y-intercepts. Parallel lines do not intersect, so the system has no solution.

METHOD 2 Elimination

Subtract the equations.

$$
\begin{aligned}
3 x+2 y & =10 \\
3 x+2 y & =2 \\
\hline 0 & =8 \longleftarrow \text { This is a false statement. }
\end{aligned}
$$

- The variables are eliminated and you are left with a false statement regardless of the values of x and y. This tells you that the system has no solution.

[^0]
[^0]: AnimatedAlgebra at classzone.com

