KAYAKING During a kayaking trip, a kayaker travels 12 miles upstream (against the current) and 12 miles downstream (with the current), as shown. The speed of the current remained constant during the trip. Find the average speed of the kayak in still water and the speed of the current.

STEP 1 Write a system of equations. First find the speed of the kayak going upstream and the speed of the kayak going downstream.

Upstream: $d=r t$

$$
\begin{aligned}
12 & =r \cdot 3 \\
4 & =r
\end{aligned}
$$

Downstream: $d=r t$

$$
12=r \cdot 2
$$

$$
6=r
$$

Use the speeds to write a linear system. Let x be the average speed of the kayak in still water, and let y be the speed of the current.
Equation 1: Going upstream

Equation 2: Going downstream

STEP 2 Solve the system of equations.

$$
\begin{array}{rlrl}
x-y & =4 & & \text { Write Equation } 1 . \\
x+y & =6
\end{array} \quad \begin{aligned}
& \text { Write Equation } 2 . \\
& 2 x=10
\end{aligned} \begin{array}{ll}
\text { Add equations. } \\
x & =5
\end{array} \begin{array}{ll}
\text { Solve for } \boldsymbol{x} .
\end{array}
$$

Substitute 5 for x in Equation 2 and solve for y.

$$
\begin{aligned}
5+y & =6 \\
y & =1
\end{aligned} \quad \text { Substitute } 5 \text { for } x \text { in Equation } 2 .
$$

- The average speed of the kayak in still water is 5 miles per hour, and the speed of the current is 1 mile per hour.

Ainimated Algebra at classzone.com

