73 Solve Linear Systems by Adding or Subtracting
 tiks A.8.A, A.8.B

Before
Now
Why?

You solved linear systems by graphing and using substitution. You will solve linear systems using elimination. So you can solve a problem about arranging flowers, as in Ex. 42.

Key Vocabulary - system of linear equations, p. 427

When solving a linear system, you can sometimes add or subtract the equations to obtain a new equation in one variable. This method is called elimination.

KEY CONCEPT

For Your Notebook

Solving a Linear System Using the Elimination Method

STEP 1 Add or subtract the equations to eliminate one variable.
STEP 2 Solve the resulting equation for the other variable.
STEP 3 Substitute in either original equation to find the value of the eliminated variable.

EXAMPLE 1 Use addition to eliminate a variable

Solve the linear system:

$$
\begin{array}{ll}
2 x+3 y=11 & \text { Equation } 1 \\
-2 x+5 y=13 & \text { Equation } 2
\end{array}
$$

Solution

STEP 1 Add the equations to

$$
\begin{aligned}
2 x+3 y & =11 \\
-2 x+5 y & =13 \\
\hline 8 y & =24 \\
y & =3
\end{aligned}
$$ eliminate one variable.

STEP 2 Solve for y.

STEP 3 Substitute 3 for y in either equation and solve for x.

$$
\begin{aligned}
2 x+3 y & =11 & & \text { Write Equation } 1 . \\
2 x+3(3) & =11 & & \text { Substitute } 3 \text { for } y . \\
x & =1 & & \text { Solve for } x .
\end{aligned}
$$

- The solution is $(1,3)$.

CHECK Substitute 1 for x and 3 for y in each of the original equations.

$$
\begin{aligned}
2 x+3 y & =11 \\
2(1)+3(3) & \stackrel{?}{=} 11 \\
11 & =11
\end{aligned}
$$

$$
\begin{aligned}
-2 x+5 y & =13 \\
-2(1)+5(3) & \stackrel{?}{=} 13 \\
13 & =13
\end{aligned}
$$

