Investigating ACTIVITY Use before Lesson 7.3

7.3 Linear Systems and Elimination

MATERIALS • algebra tiles

QUESTION How can you solve a linear system using algebra tiles?

You can use the following algebra tiles to model equations.

EXPLORE Solve a linear system using algebra tiles.

Solve the linear system:

3x - y = 5 Equation 1 x + y = 3 Equation 2

STEP 1 Model equations

Model each equation using algebra tiles. Arrange the algebra tiles so that one equation is directly below the other equation.

STEP 2 Add equations

Combine the two equations to form one equation. Notice that the new equation has one positive *y*-tile and one negative *y*-tile. The *y*-tiles can be removed because the pair of *y*-tiles has a value of 0.

STEP 3 Solve for x

Divide the remaining tiles into four equal groups. Each *x*-tile is equal to two 1-tiles. So, x = 2.

STEP 4 Solve for y

To find the value of *y*, use the model for Equation 2. Because x = 2, you can replace the *x*-tile with two 1-tiles. Solve the new equation for *y*. So y = 1, and the solution of the system is (2, 1).

DRAW CONCLUSIONS Use your observations to complete these exercises

Use algebra tiles to model and solve the linear system.

1. $x + 3y = 8$	2. $2x + y = 5$	3. $5x - 2y = -2$	4. $x + 2y = 3$
4x - 3y = 2	-2x + 3y = 7	x + 2y = 14	-x + 3y = 2

5. REASONING Is it possible to solve the linear system 3x - 2y = 6 and 2x + y = 11 using the steps shown above? *Explain* your reasoning.