

7.3 Linear Systems and Elimination mas a.s.

MATERIALS • algebra tiles
QUESTION How can you solve a linear system using algebra tiles?
You can use the following algebra tiles to model equations.

EXPLORE
 Solve a linear system using algebra tiles.

Solve the linear system: $\quad 3 x-y=5 \quad$ Equation 1

$$
x+y=3 \quad \text { Equation } 2
$$

STEP 1 Model equations

Model each equation using algebra tiles. Arrange the algebra tiles so that one equation is directly below the other equation.

STEP 2 Add equations

Combine the two equations to form one equation. Notice that the new equation has one positive y-tile and one negative y-tile. The y-tiles can be removed because the pair
 of y-tiles has a value of 0 .

STEP 3 Solve for x

Divide the remaining tiles into four equal groups. Each x-tile is equal to two 1-tiles. So, $x=2$.

STEP 4 Solve for y

To find the value of y, use the model for Equation 2.

Because $x=2$, you can replace the x-tile with two
1 -tiles. Solve the new equation for y. So $y=1$, and
the solution of the system is $(2,1)$.

Draw Conclusions Use your observations to complete these exercises

Use algebra tiles to model and solve the linear system.

1. $x+3 y=8$
2. $2 x+y=5$
$4 x-3 y=2$
$-2 x+3 y=7$
3. $5 x-2 y=-2$
$x+2 y=14$
4. $x+2 y=3$
$-x+3 y=2$
5. REASONING Is it possible to solve the linear system $3 x-2 y=6$ and $2 x+y=11$ using the steps shown above? Explain your reasoning.
