EXAMPLE 4 Solve a mixture problem

DRAW A DIAGRAM

Each bar shows the liquid in each mix. The green portion shows the percent of the mix that is antifreeze.

ANTIFREEZE For extremely cold temperatures, an automobile manufacturer recommends that a 70% antifreeze and 30% water mix be used in the cooling system of a car. How many quarts of pure (100%) antifreeze and a 50% antifreeze and 50% water mix should be combined to make 11 quarts of a 70% antifreeze and 30% water mix?

Solution

STEP 1 Write an equation for the total number of quarts and an equation for the number of quarts of antifreeze. Let x be the number of quarts of 100% antifreeze, and let y be the number of quarts a 50% antifreeze and 50% water mix.

Equation 1: Total number of quarts

$$
x+y=11
$$

Equation 2: Number of quarts of antifreeze

The system of equations is: $x+y=11 \quad$ Equation 1
$x+0.5 y=7.7 \quad$ Equation 2
STEP 2 Solve Equation 1 for x.

$$
\begin{aligned}
x+y & =11 & & \text { Write Equation } 1 . \\
x & =11-y & & \text { Revised Equation } 1
\end{aligned}
$$

STEP 3 Substitute $11-y$ for x in Equation 2 and solve for y.

$$
\begin{aligned}
x+0.5 y & =7.7 & & \text { Write Equation } \mathbf{2} . \\
(11-y)+0.5 y & =7.7 & & \text { Substitute } 11-y \text { for } \boldsymbol{x} . \\
y & =6.6 & & \text { Solve for } y .
\end{aligned}
$$

STEP 4 Substitute 6.6 for y in the revised Equation 1 to find the value of x.

$$
x=11-y=11-6.6=4.4
$$

Mix 4.4 quarts of 100% antifreeze and 6.6 quarts of a 50% antifreeze and 50% water mix to get 11 quarts of a 70% antifreeze and 30% water mix.

