EXAMPLE 2 Use the substitution method

CHOOSE AN

 EQUATIONEquation 1 was chosen in Step 1 because x has a coefficient of 1 . So, only one step is needed to solve Equation 1 for x.

Solve the linear system: $x-2 y=-6 \quad$ Equation 1 $4 x+6 y=4 \quad$ Equation 2

Solution

STEP 1 Solve Equation 1 for x.

$$
\begin{aligned}
x-2 y & =-6 & & \text { Write original Equation } 1 . \\
x & =2 y-6 & & \text { Revised Equation } 1
\end{aligned}
$$

STEP 2 Substitute $2 y-6$ for x in Equation 2 and solve for y.

$4 x+6 y$	$=4$		Write Equation $\mathbf{2}$.
$4(2 y-6)+6 y$	$=4$		Substitute $\mathbf{2 y - 6}$ for \boldsymbol{x}.
$8 y-24+6 y$	$=4$		Distributive property
$14 y-24$	$=4$		Simplify.
$14 y$	$=28$		Add $\mathbf{2 4}$ to each side.
y	$=2$		Divide each side by $\mathbf{1 4 .}$

STEP 3 Substitute 2 for y in the revised Equation 1 to find the value of x.
$x=2 y-6 \quad$ Revised Equation 1
$x=2(2)-6 \quad$ Substitute 2 for y.
$x=-2 \quad$ Simplify.

- The solution is $(-2,2)$.

CHECK Substitute -2 for x and 2 for y in each of the original equations.

Equation 1

$$
\begin{aligned}
x-2 y & =-6 \\
-2-2(2) & \stackrel{?}{=}-6 \\
-6 & =-6
\end{aligned}
$$

Equation 2

$$
\begin{aligned}
4 x+6 y & =4 \\
4(-2)+6(2) & \stackrel{?}{=} 4 \\
4 & =4
\end{aligned}
$$

CHECK REASONABLENESS When solving a linear system using the substitution method, you can use a graph to check the reasonableness of your solution. For example, the graph at the right verifies that $(-2,2)$ is a solution of the linear system in Example 2.

Guided Practice
 1. $\begin{aligned} & y=2 x+5 \\ & 3 x+y=10\end{aligned}$

 for Examples 1 and 2Solve the linear system using the substitution method.
2. $x-y=3$
$x+2 y=-6$
3. $\begin{aligned} 3 x+y & =-7 \\ -2 x+4 y & =0\end{aligned}$

