EXAMPLE 4) TAKS REASONING: Multi-Step Problem

RENTAL BUSINESS A business rents in-line skates and bicycles. During one day, the business has a total of 25 rentals and collects \$450 for the rentals. Find the number of pairs of skates rented and the number of bicycles rented.

Solution

STEP 1 Write a linear system. Let *x* be the number of pairs of skates rented, and let *y* be the number of bicycles rented.

x + y = 25	Equation for number of rentals	
15x + 30y = 450	Equation for money collected from rentals	

- *STEP 2* **Graph** both equations.
- **STEP 3 Estimate** the point of intersection. The two lines appear to intersect at (20, 5).
- *STEP 4* Check whether (20, 5) is a solution.

> The business rented 20 pairs of skates and 5 bicycles.

GUIDED PRACTICE for Example 4

6. WHAT IF? In Example 4, suppose the business has a total of 20 rentals and collects \$420. Find the number of bicycles rented.

7.1 EXERCISES

SKILL PRACTICE

- **1. VOCABULARY** Copy and complete: A(n) <u>?</u> of a system of linear equations in two variables is an ordered pair that satisfies each equation in the system.
- **2. WRITING** *Explain* how to use the graph-and-check method to solve a linear system of two equations in two variables.

CHECKING SOLUTIONS Tell whether the ordered pair is a solution of the linear system.

3. (-3, 1);	4. (5, 2);	5. (-2, 1);
x + y = -2	2x - 3y = 4	6x + 5y = -7
x + 5y = 2	2x + 8y = 11	x - 2y = 0