Solving a Linear System Using the Graph-and-Check Method

STEP 1 Graph both equations in the same coordinate plane. For ease of graphing, you may want to write each equation in slope-intercept form.
STEP 2 Estimate the coordinates of the point of intersection.
STEP 3 Check the coordinates algebraically by substituting into each equation of the original linear system.

EXAMPLE 2 Use the graph-and-check method

Solve the linear system: $\quad-x+y=-7 \quad$ Equation 1

$$
x+4 y=-8 \quad \text { Equation } 2
$$

Solution

STEP 1 Graph both equations.

STEP 2 Estimate the point of intersection. The two lines appear to intersect at $(4,-3)$.

STEP 3 Check whether $(4,-3)$ is a solution by substituting 4 for x and -3 for y in each of the original equations.

Equation 1

$$
\begin{aligned}
-x+y & =-7 \\
-(4)+(-3) & \stackrel{?}{=}-7 \\
-7 & =-7
\end{aligned}
$$

Equation 2

$$
\begin{aligned}
x+4 y & =-8 \\
4+4(-3) & \stackrel{?}{=}-8 \\
-8 & =-8
\end{aligned}
$$

Because (4, 3) is a solution of each equation, it is a solution of the linear system.

AnimatedAlgebra at classzone.com

Guided Practice for Examples 1 and 2

Solve the linear system by graphing. Check your solution.

1. $\begin{array}{r}-5 x+y=0 \\ 5 x+y=10\end{array}$
2. $-x+2 y=3$
$2 x+y=4$
3. $\begin{array}{r}x-y=5 \\ 3 x+y=3\end{array}$
