7.1 Solve Linear Systems by Graphing

You graphed linear equations. You will graph and solve systems of linear equations. So you can analyze craft fair sales, as in Ex. 33.

Key Vocabulary

- system of linear equations
- solution of a system of linear equations
- consistent independent system

A **system of linear equations,** or simply a *linear system*, consists of two or more linear equations in the same variables. An example is shown below.

x + 2y = 7	Equation 1
3x - 2y = 5	Equation 2

A **solution of a system of linear equations** in two variables is an ordered pair that satisfies each equation in the system.

One way to find the solution of a linear system is by graphing. If the lines intersect in a single point, then the coordinates of the point are the solution of the linear system. A solution found using graphical methods should be checked algebraically.

EXAMPLE 1 Check the intersection point

Use the graph to solve the system. Then check your solution algebraically.

x + 2y = 7 Equation 1 3x - 2y = 5 Equation 2

Solution

The lines appear to intersect at the point (3, 2).

CHECK Substitute 3 for x and 2 for y in each equation.

x + 2y = 7	3x - 2y = 5
3 + 2(2) [?] = 7	3(3) − 2(2) [?] 5
7 = 7 🗸	5 = 5 🗸

• Because the ordered pair (3, 2) is a solution of each equation, it is a solution of the system.

TYPES OF LINEAR SYSTEMS In Example 1, the linear system has exactly one solution. A linear system that has exactly one solution is called a **consistent independent system** because the lines are distinct (are independent) and intersect (are consistent). You will solve consistent independent systems in Lessons 7.1–7.4. In Lesson 7.5 you will consider other types of systems.