6
 CHAPTER REVIEW

6.6 Solve Absolute Value Inequalities

EXAMPLE

Solve $3|2 x+11|+2 \leq 17$. Graph your solution.

$$
\begin{array}{rlrl}
3|2 x+11|+2 & \leq 17 & & \text { Write original inequality. } \\
3|2 x+11| & \leq 15 & & \text { Subtract } 2 \text { from each side. } \\
|2 x+11| & \leq 5 & & \text { Divide each side by } 3 . \\
-5 \leq 2 x+11 \leq 5 & & \text { Rewrite as compound inequality. } \\
-16 \leq 2 x \leq-6 & & \text { Subtract 11 from each expression. } \\
-8 \leq x \leq-3 & & \text { Divide each side by } 2 .
\end{array}
$$

- The solutions are all real numbers greater than or equal to -8 and less than or equal to -3 .

EXERCISES

EXAMPLES
1,2 , and 3 on pp. 398-399 for Exs. 31-36

Solve the inequality. Graph your solution.
31. $|m| \geq 8$
32. $|6 k+1| \geq 2$
33. $|3 g-2|<5$
34. $6|3 x+5| \leq 14$
35. $|2 j-9|-2>10$
36. $5|d+8|-7>13$

6.7 Graph Linear Inequalities in Two Variables

EXAMPLE

Graph the inequality $\boldsymbol{y}<\mathbf{3 x - 1}$.
STEP 1 Graph the equation $y=3 x-1$. The inequality is <, so use a dashed line.
STEP 2 Test $(0,0)$ in $y<3 x-1$.

$$
\begin{aligned}
& 0 \stackrel{?}{<} 3(0)-1 \\
& 0<-1 x
\end{aligned}
$$

STEP 3 Shade the half-plane that does not contain
 $(0,0)$, because $(0,0)$ is not a solution of the inequality.

EXERCISES

EXAMPLES

$1,2,3,4$, and 5 on pp. 405-407 for Exs. 37-44

Tell whether the ordered pair is a solution of $-3 x+2 y \geq 16$.
37. $(-2,8)$
38. ($-1,-1$)
39. $(-2,10)$
40. $(9,-5)$

Graph the inequality.
41. $y>2 x+3$
42. $y \leq \frac{1}{2} x-1$
43. $3 x-2 y<12$
44. $y \geq 3$

