CHAPIER SUMMARY

BIG IDEAS

Big Idea 1
 teks A.7.B

Applying Properties of Inequality

You can apply the properties of inequality to solve inequalities. The properties listed below are also true for inequalities involving \leq and \geq.

Property	If $\boldsymbol{a}<\boldsymbol{b}$, then \ldots	If $\boldsymbol{a}>\boldsymbol{b}$, then \ldots
Addition property of inequality	$a+c<b+c$.	$a+c>b+c$.
Subtraction property of inequality	$a-c<b-c$.	$a-c>b-c$.
Multiplication property of inequality	$a c<b c$ if $c>0$.	$a c>b c$ if $c>0$.
	$a c>b c$ if $c<0$.	$a c<b c$ if $c<0$.
	$\frac{a}{c}<\frac{b}{c}$ if $c>0$.	$\frac{a}{c}>\frac{b}{c}$ if $c>0$.
Division property of inequality	$\frac{a}{c}>\frac{b}{c}$ if $c<0$.	$\frac{a}{c}<\frac{b}{c}$ if $c<0$.

Big Idea (2)

Using Statements with And or Or

An absolute value equation can be rewritten as two equations joined by or. An absolute value inequality can be rewritten as a compound inequality with and or or. In the statements below, < can be replaced by \leq, and > can be replaced by \geq.

Absolute value equation or inequality	Equivalent statement with and or or
$\|a x+b\|=c, c \geq 0$	$a x+b=c$ or $a x+b=-c$
$\|a x+b\|<c, c \geq 0$	$-c<a x+b<c$
$\|a x+b\|>c, c \geq 0$	$a x+b<-c$ or $a x+b>c$

Big Idea 3
 teks A.1.D

Graphing Inequalities

You use a number line to graph an inequality in one variable. Similarly, you use a coordinate plane to graph a linear inequality in two variables (including cases where one of the variables has a coefficient of 0 , such as $0 x+y<1$, or $y<1$).

Graphing inequalities in one variable

Graph simple inequalities:

1. Solve for the variable.
2. Draw an open circle for $<$ or $>$ and a closed circle for \leq or \geq. Draw an arrow in the appropriate direction.
Graph compound inequalities:
3. Solve the compound inequality.
4. Use the union of graphs of simple inequalities for or. Use the intersection for and.

Graphing linear inequalities in two variables

1. Graph the boundary line. Use a solid line for \leq or \geq and a dashed line for $<$ or $>$.
2. Test a point that does not lie on the boundary line.
3. Shade the half-plane containing the point if the ordered pair is a solution of the inequality. Shade the other half-plane if the ordered pair is not a solution.
