LINEAR INEQUALITIES IN ONE VARIABLE The steps for graphing a linear inequality in two variables can be used to graph a linear inequality in one variable in a coordinate plane.

The boundary line for an inequality in one variable is either vertical or horizontal. When testing a point to determine which half-plane to shade, do the following:

- If an inequality has only the variable *x*, substitute the *x*-coordinate of the test point into the inequality.
- If an inequality has only the variable *y*, substitute the *y*-coordinate of the test point into the inequality.

EXAMPLE 4 **Graph a linear inequality in one variable**

Graph the inequality $y \ge -3$.

Solution

STEP 1 Graph the equation y = -3. The inequality is \geq , so use a solid line.

STEP 2 Test (2, 0) in $y \ge -3$. You substitute only the y-coordinate, because the inequality does not have the variable *x*.

$$0 \ge -3$$

STEP 3 Shade the half-plane that contains (2, 0), because (2, 0) is a solution of the inequality.

EXAMPLE 5 **Graph a linear inequality in one variable**

Graph the inequality x < -1.

Solution

STEP 1 Graph the equation x = -1. The inequality is <, so use a dashed line.

STEP 2 Test (3, 0) in x < -1. You substitute only the x-coordinate, because the inequality does not have the variable γ .

$$3 < -1 X$$

STEP 3 Shade the half-plane that does *not* contain (3, 0), because (3, 0) is not a solution of the inequality.

Animated Algebra at classzone.com

GUIDED PRACTICE

for Examples 4 and 5

Graph the inequality.

5.
$$v > 1$$

6.
$$y \le 3$$

7.
$$x < -2$$