KEY CONCEPT

For Your Notebook

Graphing a Linear Inequality in Two Variables

- **STEP 1** Graph the boundary line. Use a *dashed line* for < or >, and use a *solid line* for \le or \ge .
- *STEP 2* **Test** a point not on the boundary line by checking whether the ordered pair is a solution of the inequality.

STEP 3 **Shade** the half-plane containing the point if the ordered pair is a solution of the inequality. Shade the other half-plane if the ordered pair is *not* a solution.

EXAMPLE 2 Graph a linear inequality in two variables

Graph the inequality y > 4x - 3.

Solution

STEP 1 Graph the equation y = 4x - 3. The inequality is >, so use a dashed line.

STEP 2 Test (0, 0) in y > 4x - 3.

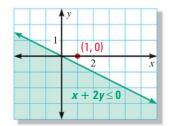
 $0 \stackrel{?}{>} 4(0) - 3$

- y>4x-3 (0,0) / 2 x
- *STEP 3* **Shade** the half-plane that contains (0, 0), because (0, 0) is a solution of the inequality.

EXAMPLE 3 Graph a linear inequality in two variables

Graph the inequality $x + 2y \le 0$.

Solution


STEP 1 Graph the equation x + 2y = 0. The inequality is \leq , so use a solid line.

STEP 2 Test (1, 0) in $x + 2y \le 0$.

 $1+2(0) \stackrel{?}{\leq} 0$

 $1 \le 0$

STEP 3 **Shade** the half-plane that does not contain (1, 0), because (1, 0) is *not* a solution of the inequality.

GUIDED PRACTICE for Examples 2 and 3

4. Graph the inequality $x + 3y \ge -1$.

AVOID ERRORS Be sure to test a

Be sure to test a point that is not on the boundary line. In Example 3, you can't test (0, 0) because it lies on the boundary line x + 2y = 0.