27. TAKS REASONING Consider a pairing of the digits 2 through 9 on a telephone keypad with the associated letters.
a. Make a table showing the pairing with the digits as inputs and the letters as outputs. Is the pairing a function? Explain.
b. Make a table showing the pairing with the letters as inputs and the digits as outputs. Is the pairing a function? Explain.

28. MULTI-STEP PROBLEM The table shows the fuel efficiency of four compact cars from one manufacturer for model year 2004.

City fuel efficiency (mi/gal), \boldsymbol{c}	24	26	27	28
Highway fuel efficiency (mi/gal), \boldsymbol{h}	32	34	35	36

a. Write a Rule Use the table to write a rule for the cars' highway fuel efficiency as a function of their city fuel efficiency.
b. Predict Another of the manufacturer's compact cars has a city fuel efficiency of 30 miles per gallon. Predict the highway fuel efficiency.
c. Calculate A study found that if gas costs $\$ 2$ per gallon, you can use the expression $\frac{11,550}{c}+\frac{9450}{h}$ to estimate a car's annual fuel cost (in dollars) for a typical driver. Evaluate the expression for the car in part (b).
29. CHALLENGE Each week you spend a total of 5 hours exercising. You swim part of the time and bike the rest.

300 calories per hour

440 calories per hour
a. Write a rule for the total number of calories you burn for the whole 5 hours as a function of the time you spend swimming.
b. One week you spend half the time swimming. How many calories do you burn during the whole 5 hours?

MIXED REVIEW FOR TAKS

TAKS PRACTICE at classzone.com

REVIEW
Lesson 1.5;
TAKS Workbook

REVIEW
Lesson 1.3;
TAKS Workbook
30. TAKS PRACTICE A train averages a speed of 75 miles per hour on a 300 mile trip. The train travels within a single time zone and leaves at 1 P.M. What time will the train arrive at its destination? TAKS Obj. 10
(A) 3:00 P.M.
(B) 3:30 P.M.
(C) 4 P.M.
(D) 5 P.M.
31. TAKS PRACTICE You pay a $\$ 5$ processing fee to order concert tickets no matter how many tickets you order. Each ticket costs $\$ 18$. Which equation best represents c, the total cost of ordering n tickets? TAKS Obj. 4
(F) $c=18 n+5$
(G) $18=c n+5$
(H) $c=18(n+5)$
(J) $18=c(n+5)$

