## Evaluate the expression.

a. $x^{4}$ when $x=2$
b. $n^{3}$ when $n=1.5$

## Solution

a. $x^{4}=2^{4}$
$=2 \cdot 2 \cdot 2 \cdot 2$
$=16$
b. $n^{3}=1.5^{3}$
$=(1.5)(1.5)(1.5)$

$$
=3.375
$$

## Guided Practice for Example 4

Evaluate the expression.
9. $x^{3}$ when $x=8$
10. $k^{2}$ when $k=2.5$
11. $d^{4}$ when $d=\frac{1}{3}$ and volume, see pp. 924 and 927.

AREA AND VOLUME Exponents are used in the formulas for the area of a square and the volume of a cube. In fact, the words squared and cubed come from the formula for the area of a square and the formula for the volume of a cube.


$$
V=s^{3}
$$



## EXAMPLE 5 Evaluate a power

STORAGE CUBES Each edge of the medium-sized pop-up storage cube shown is 14 inches long. The storage cube is made so that it can be folded flat when not in use. Find the volume of the storage cube.

## Solution

$$
\begin{aligned}
V & =s^{3} & & \text { Write formula for volume. } \\
& =14^{3} & & \text { Substitute } 14 \text { for } s . \\
& =2744 & & \text { Evaluate power. }
\end{aligned}
$$

- The volume of the storage cube is 2744 cubic inches.



## Guided Practice for Example 5

12. WHAT IF? In Example 5, suppose the storage cube is folded flat to form a square. Find the area of the square.
