READING

You can use the words between and beyond to describe absolute value inequalites. For example, $|x|<2$ means that x is between -2 and 2; $|x|>2$ means that x is beyond -2 or beyond 2 .

Solving Absolute Value Inequalities

- The inequality $|a x+b|<c$ where $c>0$ is equivalent to the compound inequality $-c<a x+b<c$.
- The inequality $|a x+b|>c$ where $c>0$ is equivalent to the compound inequality $a x+b<-c$ or $a x+b>c$.

In the inequalities above, < can be replaced by \leq and $>$ can be replaced by \geq.

EXAMPLE 2 Solve an absolute value inequality

Solve $|x-5| \geq 7$. Graph your solution.

$$
\begin{array}{rlrl}
|x-5| & \geq 7 & & \text { Write original inequality. } \\
x-5 \leq-7 & \text { or } & x-5 \geq 7 & \\
\text { Rewrite as compound inequality. } \\
x \leq-2 \text { or } & & x \geq 12 & \\
\text { Add } 5 \text { to each side. }
\end{array}
$$

- The solutions are all real numbers less than or equal to -2 or greater than or equal to 12 . Check several solutions in the original inequality.

EXAMPLE 3 Solve an absolute value inequality

Solve $|-4 x-5|+3<9$. Graph your solution.

$$
\begin{aligned}
&|-4 x-5|+3<9 \text { Write original inequality. } \\
&|-4 x-5|<6 \text { Subtract } 3 \text { from each side. } \\
&-6<-4 x-5<6 \text { Rewrite as compound inequality. } \\
&-1<-4 x<11 \text { Add } 5 \text { to each expression. } \\
& 0.25>x>-2.75 \begin{array}{l}
\text { Divide each expression by }-4 . \\
\\
-2.75<x<0.25
\end{array} \\
& \text { Reverse inequality symbol. } \\
& \text { Rewrite in the form } a<x<b .
\end{aligned}
$$

- The solutions are all real numbers greater than -2.75 and less than 0.25 .

AinimatedAlgebra at classzone.com

Guided Practice for Examples 2 and 3

Solve the inequality. Graph your solution.
4. $|x+3|>8$
5. $|2 w-1|<11$
6. $3|5 m-6|-8 \leq 13$

