READING

You can use the words *between* and *beyond* to describe absolute value inequalites. For example, |x| < 2 means that *x* is between -2 and 2; |x| > 2 means that *x* is beyond -2 or beyond 2.

KEY CONCEPT

Solving Absolute Value Inequalities

- The inequality |ax + b| < c where c > 0 is equivalent to the compound inequality -c < ax + b < c.
- The inequality |ax + b| > c where c > 0 is equivalent to the compound inequality ax + b < -c or ax + b > c.

In the inequalities above, < can be replaced by \leq and > can be replaced by \geq .

EXAMPLE 2 Solve an absolute value inequality

Solve $|x-5| \ge 7$. Graph your solution.

$ x-5 \ge 7$	Write original inequality.	
$x - 5 \le -7$ or $x - 5 \ge -7$	7 Rewrite as compound inequality.	
$x \le -2$ or $x \ge$	Add 5 to each side.	

▶ The solutions are all real numbers less than or equal to −2 *or* greater than or equal to 12. Check several solutions in the original inequality.

EXAMPLE 3 Solve an absolute value inequality

GUIDED PRACTICE for Examples 2 and 3

Solve the inequality. Graph your solution.

4. |x+3| > 8

5. |2w - 1| < 11

6. $3|5m-6|-8 \le 13$