6. 6 Solve Absolute Value Inequalities
 teks A.7.A, A.7.B

Before You solved absolute value equations.
Now
Why You will solve absolute value inequalities.
So you can analyze softball compression, as in Ex. 38.

Key Vocabulary

- absolute value, p. 66
- equivalent inequalities, p. 357
- compound inequality, p. 380
- absolute deviation, p. 391
- mean, p. 918

Recall that $|x|=3$ means that the distance between x and 0 is 3 . The inequality $|x|<3$ means that the distance between x and 0 is less than 3 , and $|x|>3$ means that the distance between x and 0 is greater than 3 . The graphs of $|x|<3$ and $|x|>3$ are shown below.

EXAMPLE 1 Solve absolute value inequalities

Solve the inequality. Graph your solution.
a. $|x| \geq 6$
b. $|x| \leq 0.5$

Solution

a. The distance between x and 0 is greater than or equal to 6 .

So, $x \leq-6$ or $x \geq 6$.

- The solutions are all real numbers less than or equal to -6 or
 greater than or equal to 6 .
b. The distance between x and 0 is less than or equal to 0.5 .

So, $-0.5 \leq x \leq 0.5$.

- The solutions are all real numbers greater than or equal to -0.5 and
 less than or equal to 0.5 .

Guided Practice for Example 1

Solve the inequality. Graph your solution.

1. $|x| \leq 8$
2. $|u|<3.5$
3. $|v|>\frac{2}{3}$

SOLVING ABSOLUTE VALUE INEQUALITIES In Example 1, the solutions of $|x| \geq 6$ and $|x| \leq 0.5$ suggest that you can rewrite an absolute value inequality as a compound inequality.

