EXAMPLE 2 Graph g(x) = a|x|

Graph each function. Compare the graph with the graph of f(x) = |x|.

a.
$$g(x) = 4|x|$$

step 1 Make a table of values.

x	-2	-1	0	1	2
g (x)	8	4	0	4	8

STEP 2 Graph the function.

STEP 3 Compare the graphs of g and f. The graph of g(x) = 4|x| opens up and is narrower than the graph of f(x) = |x|.

b. g(x) = -0.5 |x|

STEP 1 Make a table of values.

x	-4	-2	0	2	4
g (x)	-2	-1	0	-1	-2

STEP 2 Graph the function.

STEP 3 Compare the graphs of g and f. The graph of g(x) = -0.5 |x| opens down and is wider than the graph of f(x) = |x|.

KEY CONCEPT

For Your Notebook

Comparing Graphs of Absolute Value Functions with the Graph of f(x) = |x|

g(x) = |x - h| $q(\mathbf{x}) = |\mathbf{x}| + \mathbf{k}$ If h > 0, the graph of If k > 0, the graph of g is |h| units to the g is |k| units above right of the graph of the graph of f(x) = |x|. f(x) = |x|. If k < 0, the graph of If h < 0, the graph of g is |k| units below the g is |h| units to the graph of f(x) = |x|. left of the graph of f(x) = |x|.

|g(x) = a|x|

If |a| > 1, the graph of *g* is narrower than the graph of f(x) = |x|. If 0 < |a| < 1, the graph of *g* is wider.

If *a* > 0, the graph of *g* opens up. If *a* < 0, the graph opens down.

PRACTICE

222222222222222222222222222222

: APPLY

TRANSFORMATIONS

The graph in part (a) of Example 2 is a vertical

stretch of the graph of

f(x) = |x|. The graph

in part (b) is a vertical

shrink with a reflection in the *x*-axis of the graph of f(x) = |x|.

EXAMPLES 1 and 2 on pp. 396–397 for Exs. 1–6	Graph the function. <i>Compare</i> the graph with the graph of $f(x) = x $.				
	1. $g(x) = x+3 $	2. $g(x) = x + 5$	3. $g(x) = x - 7$		
	4. $g(x) = 2 x $	5. $g(x) = 0.6 x $	6. $g(x) = -3 x $		
	7. Make a table of values for $g(x) = 2 x-3 + 4$. Use the following values for x : 1, 2, 3, 4, 5. Then graph the function and compare the graph with the graph of $f(x) = x $.				