EXAMPLE 2 Graph $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a}|\boldsymbol{x}|$
Graph each function. Compare the graph with the graph of $f(x)=|x|$.
a. $g(x)=4|x|$
b. $g(x)=-0.5|x|$

STEP 1 Make a table of values.

x	-2	-1	0	1	2
$g(x)$	8	4	0	4	8

STEP 2 Graph the function.

STEP 3 Compare the graphs of g and f. The graph of $g(x)=4|x|$ opens up and is narrower than the graph of $f(x)=|x|$.

STEP 1 Make a table of values.

x	-4	-2	0	2	4
$g(x)$	-2	-1	0	-1	-2

STEP 2 Graph the function.

STEP 3 Compare the graphs of g and f. The graph of $g(x)=-0.5|x|$ opens down and is wider than the graph of $f(x)=|x|$.

KEY CONCEPT

For Your Notebook

Comparing Graphs of Absolute Value Functions with the Graph of

 $f(x)=|x|$$\boldsymbol{g}(\boldsymbol{x})=|\boldsymbol{x}-\boldsymbol{h}|$
If $h>0$, the graph of g is $|h|$ units to the right of the graph of $f(x)=|x|$.

If $h<0$, the graph of g is $|h|$ units to the left of the graph of $f(x)=|x|$.
$\boldsymbol{g}(\boldsymbol{x})=|\boldsymbol{x}|+\boldsymbol{k}$
If $k>0$, the graph of g is $|k|$ units above the graph of $f(x)=|x|$. If $k<0$, the graph of g is $|k|$ units below the graph of $f(x)=|x|$.
$\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a}|\boldsymbol{x}|$
If $|a|>1$, the graph of g is narrower than the graph of $f(x)=|x|$.
If $0<|a|<1$, the graph of g is wider.

If $a>0$, the graph of g opens up. If $a<0$, the graph opens down.

PRACTICE

EXAMPLES

1 and 2
on pp. 396-397
for Exs. 1-6

Graph the function. Compare the graph with the graph of $\boldsymbol{f}(\boldsymbol{x})=|\boldsymbol{x}|$.

1. $g(x)=|x+3|$
2. $g(x)=|x|+5$
3. $g(x)=|x|-7$
4. $g(x)=2|x|$
5. $g(x)=0.6|x|$
6. $g(x)=-3|x|$
7. Make a table of values for $g(x)=2|x-3|+4$. Use the following values for $x: 1,2,3,4,5$. Then graph the function and compare the graph with the graph of $f(x)=|x|$.
