

6.4 Solve Compound Inequalities

QUESTION How can you use a graphing calculator to display the solutions of a compound inequality?

EXAMPLE Display the solutions of a compound inequality on a graphing calculator

Display the solutions of $12 \leq 3 x \leq 21$ on a graphing calculator.

STEP 1 Rewrite inequality

Rewrite $12 \leq 3 x \leq 21$ as two separate inequalities joined by and.

$12 \leq 3 x \leq 21$	Write original inequality.
$12 \leq 3 x$ and $3 x \leq 21$	Write as two inequalities joined by and.

STEP 2 Enter inequalities

Press $Y=$ and enter the two inequalities, as shown. Inequality signs can be found in the TEST menu, and and and or can be found in the LOGIC menu.

STEP 3 Display solutions

Press GRAPH to display the solutions of $12 \leq 3 x$ and $3 x \leq 21$. For each value of x that makes the inequality true, the calculator assigns a value of 1 to y and plots the point ($x, 1$). For each value of x that makes the inequality false, the calculator assigns a value of 0 to y and plots the point $(x, 0)$.

The screen in Step 3 shows the graph of $y=1$ over the interval $4 \leq x \leq 7$. This suggests that the solutions are all real numbers greater than or equal to 4 and less than or equal to 7 .

Draw Conclusions

1. Display the solutions of $12<3 x<21$ on a graphing calculator. Then compare the graph of $12<3 x<21$ with the graph of $12 \leq 3 x \leq 21$.
2. When displaying the solutions of an inequality on a graphing calculator, how do you know which inequality symbols you should use in your solution?

Display the solutions of the inequality on a graphing calculator.
3. $9 \leq 3 x \leq 21$
4. $4<4 x<8$
5. $2 \leq \frac{1}{4} x \leq 12$
6. $-6 x>18$ or $-9 x<45$
7. $4 x \leq 18$ or $5 x \geq 25$
8. $8 x \leq 16$ or $3 x \geq 30$

