Example 6 TAKS REASONING: Multi-Step Problem
ASTRONOMY The Mars Exploration Rovers Opportunity and Spirit are robots that were sent to Mars in 2003 in order to gather geological data about the planet.
The temperature at the landing sites of the robots can range from $-100^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.

- Write a compound inequality that describes the possible temperatures (in degrees Fahrenheit) at a landing site.
- Solve the inequality. Then graph your solution.
- Identify three possible temperatures (in degrees Fahrenheit) at a landing site.

Solution

Let F represent the temperature in degrees Fahrenheit, and let C represent the temperature in degrees Celsius. Use the formula $C=\frac{5}{9}(F-32)$.

STEP 1 Write a compound inequality. Because the temperature at a landing site ranges from $-100^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, the lowest possible temperature is $-100^{\circ} \mathrm{C}$, and the highest possible temperature is $0^{\circ} \mathrm{C}$.
$-100 \leq C \leq 0 \quad$ Write inequality using C.
$-100 \leq \frac{5}{9}(F-32) \leq 0 \quad$ Substitute $\frac{5}{9}(F-32)$ for C.
STEP 2 Solve the inequality. Then graph your solution.

> ANOTHER WAY
> You can solve the compound inequality by multiplying through by 9 :
> $-100 \leq \frac{5}{9}(F-32) \leq 0$
> $-900 \leq 5(F-32) \leq 0$
> $-900 \leq 5 F-160 \leq 0$
> $-740 \leq 5 F \leq 160$
> $-148 \leq F \leq 32$
$\begin{array}{ll}-100 \leq \frac{5}{9}(F-32) \leq 0 & \text { Write inequality from Step 1. } \\ -180 \leq F-32 \leq 0 & \text { Multiply each expression by } \frac{9}{5} . \\ -148 \leq F \leq 32 & \text { Add } 32 \text { to each expression. } \\ \underset{-150}{ } & \end{array}$
STEP 3 Identify three possible temperatures.
The temperature at a landing site is greater than or equal to $-148^{\circ} \mathrm{F}$ and less than or equal to $32^{\circ} \mathrm{F}$. Three possible temperatures are $-115^{\circ} \mathrm{F}, 15^{\circ} \mathrm{F}$, and $32^{\circ} \mathrm{F}$.

GUided Practice for Example 6

11. MARS Mars has a maximum temperature of $-7^{\circ} \mathrm{C}$ at the equator and a minimum temperature of $-133^{\circ} \mathrm{C}$ at the winter pole.

- Write and solve a compound inequality that describes the possible temperatures (in degrees Fahrenheit) on Mars.
- Graph your solution. Then identify three possible temperatures (in degrees Fahrenheit) on Mars.

