ANOTHER WAY In Example 3, you could solve $2<x+5<9$ by subtracting 5 from $2, x+5$, and 9 without first separating the compound inequality into two separate inequalities. To solve a compound inequality with and, you perform the same operation on each expression.

EXAMPLE 4 Solve a compound inequality with and

Solve $-5 \leq-x-3 \leq 2$. Graph your solution.

$$
\begin{array}{rlrl}
-5 & \leq-x-3 \leq 2 & & \text { Write original inequality. } \\
-5+3 & \leq-x-3+3 \leq 2+3 & & \text { Add } 3 \text { to each expression. } \\
-2 & \leq-x \leq 5 & & \text { Simplify. } \\
-1(-2) & \geq-1(-x) \geq-1(5) & & \text { Multiply each expression by }-1 \\
2 & \geq x \geq-5 & & \text { and reverse both inequality symbols. } \\
-5 & \leq x \leq 2 & & \text { Simplify. } \\
& & \text { Rewrite in the form } \boldsymbol{a} \leq \boldsymbol{x} \leq \boldsymbol{b} .
\end{array}
$$

- The solutions are all real numbers greater than or equal to -5 and
 less than or equal to 2 .

EXAMPLE 5 Solve a compound inequality with or

Solve $2 x+3<9$ or $3 x-6>12$. Graph your solution.

Solution

Solve the two inequalities separately.

$$
\begin{array}{cccl}
2 x+3<9 & \text { or } & 3 x-6>12 & \text { Write original inequality. } \\
2 x+3-3<9-3 & \text { or } & 3 x-6+6>12+6 & \begin{array}{l}
\text { Addition or subtraction } \\
\text { property of inequality }
\end{array} \\
2 x<6 & \text { or } & 3 x>18 & \begin{array}{l}
\text { Simplify. } \\
\frac{2 x}{2}<\frac{6}{2}
\end{array} \\
\text { or } & \frac{3 x}{3}>\frac{18}{3} & \begin{array}{l}
\text { Division property } \\
\text { of inequality }
\end{array} \\
x<3 & \text { or } & x>6 & \text { Simplify. }
\end{array}
$$

- The solutions are all real numbers less than 3 or greater than 6.

AnimatedAlgebra

at classzone.com

GUIDED PRACTICE for Examples 4 and 5

Solve the inequality. Graph your solution.
7. $-14<x-8<-1$
8. $-1 \leq-5 t+2 \leq 4$
9. $3 h+1<-5$ or $2 h-5>7$
10. $4 c+1 \leq-3$ or $5 c-3>17$

