EXAMPLE 2 Write and graph a real-world compound inequality

CAMERA CARS A crane sits on top of a camera car and faces toward the front. The crane's maximum height and minimum height above the ground are shown. Write and graph a compound inequality that describes the possible heights of the crane.

Solution

Let *h* represent the height (in feet) of the crane. All possible heights are greater than or equal to 4 feet *and* less than or equal to 18 feet. So, the inequality is $4 \le h \le 18$.

SOLVING COMPOUND INEQUALITIES A number is a solution of a compound inequality with *and* if the number is a solution of *both* inequalities. A number is a solution of a compound inequality with *or* if the number is a solution of *at least one* of the inequalities.

EXAMPLE 3 Solve a compound inequality with *and*

Solve 2 < x + 5 < 9. Graph your solution.

Solution

Separate the compound inequality into two inequalities. Then solve each inequality separately.

2 < x + 5	and	x + 5 < 9	Write two inequalities.
2 - 5 < <i>x</i> + 5 - 5	and	x + 5 - 5 < 9 - 5	Subtract 5 from each side.
-3 < x	and	<i>x</i> < 4	Simplify.

The compound inequality can be written as -3 < x < 4.

The solutions are all real numbers greater than -3 and less than 4.

GUIDED PRACTICE for Examples 2 and 3

3. INVESTING An investor buys shares of a stock and will sell them if the change *c* in value from the purchase price of a share is less than -\$3.00 or greater than \$4.50. Write and graph a compound inequality that describes the changes in value for which the shares will be sold.

Solve the inequality. Graph your solution.

4. -7 < x - 5 < 4 **5.** $10 \le 2y + 4 \le 24$ **6.** -7 < -z - 1 < 3