Extension
 Use artier Lesson 6.3
 Solve Linear Inequalities by Graphing

Goal Use graphs to solve linear inequalities.

So far in Chapter 6 you have seen how to solve linear inequalities algebraically. You can also solve linear inequalities graphically.

KEY CONCEPT

For Your Notebook

Solving Linear Inequalities Graphically

STEP 1 Write the inequality in one of the following forms: $a x+b<0$, $a x+b \leq 0, a x+b>0$, or $a x+b \geq 0$.

STEP 2 Write the related equation $y=a x+b$.
STEP 3 Graph the equation $y=a x+b$.

- The solutions of $a x+b>0$ are the x-coordinates of the points on the graph of $y=a x+b$ that lie above the x-axis.
- The solutions of $a x+b<0$ are the x-coordinates of the points on the graph of $y=a x+b$ that lie below the x-axis.
- If the inequality symbol is \leq or \geq, then the x-intercept of the graph is also a solution.

EXAMPLE 1 Solve an inequality graphically

Solve $3 x+2>8$ graphically.

Solution

STEP 1 Write the inequality in the form $a x+b>0$.
$3 x+2>8 \quad$ Write original inequality.
$3 x-6>0 \quad$ Subtract 8 from each side.
STEP 2 Write the related equation $y=3 x-6$.
STEP 3 Graph the equation $y=3 x-6$.
The inequality in Step 1 is in the form $a x+b>0$, and the x-intercept of the graph in Step 3 is 2 . So, $x>2$.

- The solutions are all real numbers greater than 2. Check by substituting a number greater than 2 in the original inequality.
CHECK $3 x+2>8$ Write original inequality.

$$
3(4)+2 \stackrel{?}{>} 8 \quad \text { Substitute } 4 \text { for } x .
$$

$$
14>8 \checkmark \quad \text { Solution checks. }
$$

