6.3 EXERCISES

HOMEWORK: = WORKED-OUT SOLUTIONS
KEY on p. WS1 for Exs. 5, 19, and 39

- TAKS PRACTICE AND REASONING

Exs. 33, 39, 40, 42, 44, and 45

* = MULTIPLE REPRESENTATIONS

Ex. 41

SKILL PRACTICE

EXAMPLES

1,2, and 3
on pp. $369-370$
for Exs. 3-16

EXAMPLE 4
on p. 370
for Exs. 17-28

1. VOCABULARY Copy and complete: The inequalities $3 x-1<11,3 x<12$, and $x<4$ are called ?.
2. WRITING How do you know whether an inequality has no solutions? How do you know whether the solutions are all real numbers?

SOLVING INEQUALITIES Solve the inequality. Graph your solution.
3. $2 x-3>7$
4. $5 y+9 \leq 4$
5.) $8 v-3 \geq-11$
6. $3(w+12)<0$
7. $7(r-3) \geq-13$
8. $2(s+4) \leq 16$
9. $4-2 m>7-3 m$
10. $8 n-2>17 n+9$
11. $-10 p>6 p-8$
12. $4-\frac{1}{2} q \leq 33-q$
13. $-\frac{2}{3} d-2<\frac{1}{3} d+8$
14. $8-\frac{4}{5} f>-14-2 f$

ERROR ANALYSIS Describe and correct the error in solving the inequality.
15.

$$
\begin{aligned}
17-3 x & \geq 56 \\
-3 x & \geq 39 \\
x & \geq-13
\end{aligned}
$$

16.

$$
\begin{array}{r}
-4(2 x-3)<28 \\
-8 x-12<28 \\
-8 x<40 \\
x>-5
\end{array}
$$

SOLVING INEQUALITIES Solve the inequality, if possible.
17. $3 p-5>2 p+p-7$
18. $5 d-8 d-4 \leq-4+3 d$
19.) $3(s-4) \geq 2(s-6)$
20. $2(t-3)>2 t-8$
21. $5(b+9) \leq 5 b+45$
22. $2(4 c-7) \geq 8(c-3)$
23. $6(x+3)<5 x+18+x$
24. $4+9 y-3 \geq 3(3 y+2)$
25. $2.2 h+0.4 \leq 2(1.1 h-0.1)$
26. $9.5 j-6+5.5 j \geq 3(5 j-2)$
27. $\frac{1}{5}(4 m+10)<\frac{4}{5} m+2$
28. $\frac{3}{4}(8 n-4)<-3(1-2 n)$

TRANSLATING PHRASES Translate the verbal phrase into an inequality. Then solve the inequality and graph your solution.
29. Four more than the product of 3 and x is less than 40 .
30. Twice the sum of x and 8 is greater than or equal to -36 .
31. The sum of $5 x$ and $2 x$ is greater than the difference of $9 x$ and 4 .
32. The product of 6 and the difference of $6 x$ and 3 is less than or equal to the product of -2 and the sum of 4 and $8 x$.
33. TAKS REASONING For which values of a and b are all the solutions of $a x+b>0$ positive?
(A) $a>0, b>0$
(B) $a<0, b<0$
(C) $a>0, b<0$
(D) $a<0, b=0$

