EXAMPLE 3 Solve a multi-step inequality

ANOTHER WAY

You can also solve the inequality by subtracting 17 and $6 x$ from each side, as follows:

$$
\begin{aligned}
6 x-7 & >2 x+17 \\
6 x-24 & >2 x \\
-24 & >-4 x \\
6 & <x
\end{aligned}
$$

The inequality $6<x$ is equivalent to $x>6$.

Solve $6 x-7>2 x+17$. Graph your solution.

$$
\begin{aligned}
6 x-7 & >2 x+17 & & \text { Write original inequality. } \\
6 x & >2 x+24 & & \text { Add } 7 \text { to each side. } \\
4 x & >24 & & \text { Subtract } 2 x \text { from each side. } \\
x & >6 & & \text { Divide each side by } 4 .
\end{aligned}
$$

- The solutions are all real numbers greater than 6 .

NUMBER OF SOLUTIONS If an inequality is equivalent to an inequality that is true, such as $-3<0$, then the solutions of the inequality are all real numbers. If an inequality is equivalent to an inequality that is false, such as $4<-1$, then the inequality has no solution.

Graph of an inequality whose solutions are all real numbers

Graph of an inequality that has no solution

EXAMPLE 4 Identify the number of solutions of an inequality

Solve the inequality, if possible.
a. $14 x+5<7(2 x-3)$
b. $12 x-1>6(2 x-1)$

Solution

a. $14 x+5<7(2 x-3) \quad$ Write original inequality.
$14 x+5<14 x-21 \quad$ Distributive property
$5<-21 \quad$ Subtract $14 x$ from each side.
There are no solutions because $5<-21$ is false.
b. $12 x-1>6(2 x-1) \quad$ Write original inequality.
$12 x-1>12 x-6 \quad$ Distributive property
$-1>-6 \quad$ Subtract $12 x$ from each side.
All real numbers are solutions because $-1>-6$ is true .

GUIDED PRACTICE for Examples 3 and 4

Solve the inequality, if possible. Graph your solution.
4. $5 x-12 \leq 3 x-4$
5. $5(m+5)<5 m+17$
6. $1-8 s \leq-4(2 s-1)$

