GUIDED PRACTICE for Examples 2 and 3

Solve the inequality. Graph your solution.

4.
$$\frac{x}{-4} > 12$$
 5. $\frac{m}{-7} < 1.6$ **6.** $5v \ge 45$ **7.** $-6n < 24$

EXAMPLE 4) TAKS PRACTICE: Multiple Choice

A student pilot plans to spend 80 hours on flight training to earn a private license. The student has saved \$6000 for training. Which inequality can you use to find the possible hourly rates *r* that the student can afford to pay for training?

(A) $80r \ge 6000$ **(B)** $80r \le 6000$ **(C)** $6000r \ge 80$ **(D)** $6000r \le 80$

Solution

The total cost of training can be at most the amount of money that the student has saved. Write a verbal model for the situation. Then write an inequality.

EXAMPLE 5 Solve a real-world problem

PILOTING In Example 4, what are the possible hourly rates that the student can afford to pay for training?

Solution

The student can afford to pay at most \$80 per hour for training.

GUIDED PRACTICE for Examples 4 and 5

8. WHAT IF? In Example 5, suppose the student plans to spend 90 hours on flight training and has saved \$6300. Write and solve an inequality to find the possible hourly rates that the student can afford to pay for training.