EXAMPLE 2 Solve an inequality using multiplication

AVOID ERRORS

Solve $\frac{x}{-6}<7$. Graph your solution.

$$
\frac{x}{-6}<7 \quad \text { Write original inequality. }
$$

Because you are multiplying by a negative number, be sure to reverse the inequality symbol.
$>-6 \cdot \frac{x}{-6}>-6 \cdot 7 \quad$ Multiply each side by -6 . Reverse inequality symbol.
$x>-42 \quad$ Simplify.

- The solutions are all real numbers greater than -42 . Check by substituting a number greater than -42 in the original inequality.

CHECK $\quad \frac{x}{-6}<7 \quad$ Write original inequality.
$\frac{0}{-6}{ }^{?} 7 \quad$ Substitute 0 for x.
$0<7 \checkmark \quad$ Solution checks.

USING DIVISION The rules for solving an inequality using division are similar to the rules for solving an inequality using multiplication.

KEY CONCEPT

For Your Notebook

Division Property of Inequality

Words Dividing each side of an inequality by a positive number produces an equivalent inequality.

Dividing each side of an inequality by a negative number and reversing the direction of the inequality symbol produces an equivalent inequality.

Algebra If $a<b$ and $c>0$, then $\frac{a}{c}<\frac{b}{c} . \quad$ If $a<b$ and $c<0$, then $\frac{a}{c}>\frac{b}{c}$.
If $a>b$ and $c>0$, then $\frac{a}{c}>\frac{b}{c}$. If $a>b$ and $c<0$, then $\frac{a}{c}<\frac{b}{c}$.
This property is also true for inequalities involving \leq and \geq.

EXAMPLE 3 Solve an inequality using division

Solve $-3 x>24$.

$$
\begin{aligned}
&-3 x>24 \\
& \frac{-3 x}{-3}<\frac{24}{-3} \\
& x \text { Write original inequality. } \\
& \text { Divide each side by }-3 . \text { Reverse inequality symbol. } \\
& \text { Simplify. }
\end{aligned}
$$

[^0]
[^0]: AnimatedAlgebra at classzone.com

