6. 2 Solve Inequalities Using Multiplication and Division

Before You solved inequalities using addition and subtraction.
Now
You will solve inequalities using multiplication and division.
Why? So you can find possible distances traveled, as in Ex. 40.

Key Vocabulary

- inequality, $p .21$
- equivalent inequalities, p. 357

Solving an inequality using multiplication is similar to solving an equation using multiplication, but it is different in an important way.

KEY CONCEPT

For Vour Notebook

Multiplication Property of Inequality

Words Multiplying each side of an inequality by a positive number produces an equivalent inequality.

Multiplying each side of an inequality by a negative number and reversing the direction of the inequality symbol produces an equivalent inequality.

Algebra If $a<b$ and $c>0$, then $a c<b c$. If $a<b$ and $c<0$, then $a c>b c$.
If $a>b$ and $c>0$, then $a c>b c$. If $a>b$ and $c<0$, then $a c<b c$.
This property is also true for inequalities involving \leq and \geq.

EXAMPLE 1 Solve an inequality using multiplication

Solve $\frac{x}{4}<5$. Graph your solution.

$$
\begin{array}{cl}
\frac{x}{4}<5 & \text { Write original inequality. } \\
4 \cdot \frac{x}{4}<4 \cdot 5 & \text { Multiply each side by } 4 . \\
x<20 & \text { Simplify. }
\end{array}
$$

- The solutions are all real numbers less than 20. Check by substituting a number less than 20 in the original inequality.

Guided Practice for Example 1

Solve the inequality. Graph your solution.

1. $\frac{x}{3}>8$
2. $\frac{m}{8} \leq-2$
3. $\frac{y}{2.5} \geq-4$
