EXAMPLE 2 Identify a function

Tell whether the pairing is a function.

a.

b.

Input	Output			
0	0			
1	2			
4	8			
6	12			

The pairing is *not* a function because the input 0 is paired with both 2 and 3.

The pairing is a function because each input is paired with exactly one output.

GUIDED PRACTICE

for Example 2

Tell whether the pairing is a function.

2.	Input	3	6	9	12
	Output	1	2	2	1

Input	2	2	4	7
Output	0	1	2	3

FUNCTION RULES A function may be represented using a rule that relates one variable to another. The input variable is called the **independent variable**. The output variable is called the **dependent variable** because its value depends on the value of the input variable.

3.

READING

Function rules typically give the dependent variable in terms of the independent variable. In an equation like y = x + 3, you know that y is the dependent variable.

KEY CONCEPT				For Your Notebook			
Equation	Table						
y = x + 3	Input, x	0	1	2	3	4	
	Output, y	3	4	5	6	7	
	•	y = x + 3 Input, x	Equation Table $y = x + 3$ Input, $x = 0$	Equation Table $y = x + 3$ Input, $x = 0$ 1	Equation Table $y = x + 3$ Input, $x = 0$ 1 2	Equation Table $y = x + 3$ Input, $x = 0$ 1 2 3	

EXAMPLE 3 Make a table for a function

The domain of the function y = 2x is 0, 2, 5, 7, and 8. Make a table for the function, then identify the range of the function.

Solution

X	0	2	5	7	8
y = 2x	2(0) = 0	2(2) = 4	2(5) = 10	2(7) = 14	2(8) = 16

The range of the function is 0, 4, 10, 14, and 16.