TARS Obj.7. REVIEWING TRANSFORMATION PROBLEMS
Recall that three types of transformations are translations, reflections, and dilations.

Coordinate Notation for Transformations

A translation moves every point in a figure the same distance in the same direction.

Coordinate notation: $(x, y) \rightarrow(x+a, y+b)$
Example: $(x, y) \rightarrow(x+1, y-2)$ represents the translation "move each point 1 unit to the right and 2 units down."

A dilation stretches or shrinks a figure with respect to a point.
Coordinate notation: $(x, y) \rightarrow(k x, k y)$ where k is the scale factor of the dilation. If $0<k<1$, the figure will shrink. If $k>1$, the figure will stretch.

Example: $(x, y) \rightarrow(2 x, 2 y)$ stretches the figure by a scale factor of 2 . The vertical and horizontal distance of each point from the origin doubles.

A reflection flips a figure across a line.
Reflection across the x-axis: $(x, y) \rightarrow(x,-y)$
Reflection across the y-axis: $(x, y) \rightarrow(-x, y)$

EXAMPLE

Find the coordinates of the vertices of the image of $\triangle X Y Z$ reflected across the y-axis.

Solution

$\triangle X Y Z$ has coordinates $X(-3,2), Y(-2,1)$, and
 $Z(1,3)$. To reflect $\triangle X Y Z$ across the y-axis, multiply the x-coordinate of each vertex by -1 .

$$
\begin{aligned}
(x, y) & \rightarrow(-x, y) \\
X(-3,2) & \rightarrow X^{\prime}(3,2) \\
Y(-2,1) & \rightarrow Y^{\prime}(2,1) \\
Z(1,3) & \rightarrow Z^{\prime}(-1,3)
\end{aligned}
$$

- The coordinates are $X^{\prime}(3,2), Y^{\prime}(2,1)$, and
 $Z^{\prime}(-1,3)$.

