CHAPIER SUMMARY

BIG IDEAS

For Your Notebook

Big Idea (1)
 TEKS A.6.D

Writing Linear Equations in a Variety of Forms
Using given information about a line, you can write an equation of the line in three different forms.

Form	Equation	Important information
Slope-intercept form	$y=m x+b$	•The slope of the line is m. -The y-intercept of the line is b.
Point-slope form	$y-y_{1}=m\left(x-x_{1}\right)$	• The slope of the line is m. •The line passes through $\left(x_{1}, y_{1}\right)$.
Standard form	$A x+B y=C$	•A, B, and C are real numbers. • A and B are not both zero.

Big Idea (2)

teks A.7.A

Big Idea (3)

TEKS A.2.D

Using Linear Models to Solve Problems

You can write a linear equation that models a situation involving a constant rate of change. Analyzing given information helps you choose a linear model.

Choosing a Linear Model	
If this is what you know ...	\ldots then use this equation form
constant rate of change and initial value	slope-intercept form
constant rate of change and one data pair	slope-intercept form or point-slope form
two data pairs and the fact that the rate of change is constant	slope-intercept form or point-slope form
the sum of two variable quantities is constant	standard form

Modeling Data with a Line of Fit

You can use a line of fit to model data that have a positive or negative correlation. The line or an equation of the line can be used to make predictions.

Step 1 Make a scatter plot of the data.
Step 2 Decide whether the data can be modeled by a line.
Step 3 Draw a line that appears to follow the trend in data closely.
Step 4 Write an equation using two points on the line.
Step 5 Interpolate (between known values) or extrapolate (beyond known values) using the line or its equation.

